Suppr超能文献

蛙跳中的肌肉表现:弹性对肌肉工作长度的影响。

Muscle performance during frog jumping: influence of elasticity on muscle operating lengths.

机构信息

Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.

出版信息

Proc Biol Sci. 2010 May 22;277(1687):1523-30. doi: 10.1098/rspb.2009.2051. Epub 2010 Jan 27.

Abstract

A fundamental feature of vertebrate muscle is that maximal force can be generated only over a limited range of lengths. It has been proposed that locomotor muscles operate over this range of lengths in order to maximize force production during movement. However, locomotor behaviours like jumping may require muscles to shorten substantially in order to generate the mechanical work necessary to propel the body. Thus, the muscles that power jumping may need to shorten to lengths where force production is submaximal. Here we use direct measurements of muscle length in vivo and muscle force-length relationships in vitro to determine the operating lengths of the plantaris muscle in bullfrogs (Rana catesbeiana) during jumping. We find that the plantaris muscle operates primarily on the descending limb of the force-length curve, resting at long initial lengths (1.3 +/- 0.06 L(o)) before shortening to muscle's optimal length (1.03 +/- 0.05 L(o)). We also compare passive force-length curves from frogs with literature values for mammalian muscle, and demonstrate that frog muscles must be stretched to much longer lengths before generating passive force. The relatively compliant passive properties of frog muscles may be a critical feature of the system, because it allows muscles to operate at long lengths and improves muscles' capacity for force production during a jump.

摘要

脊椎动物肌肉的一个基本特征是,只有在有限的长度范围内才能产生最大力。有人提出,运动肌肉在这个长度范围内运作,以便在运动过程中最大限度地产生力量。然而,跳跃等运动行为可能需要肌肉大幅度缩短,以产生推动身体所需的机械功。因此,为跳跃提供动力的肌肉可能需要缩短到产生次最大力的长度。在这里,我们使用体内肌肉长度的直接测量和体外肌肉力-长度关系来确定牛蛙(Rana catesbeiana)跳跃时跖肌的工作长度。我们发现,跖肌主要在力-长度曲线的下降支上运作,在缩短到肌肉的最佳长度(1.03 +/- 0.05 L(o))之前,先在初始长度较长的位置(1.3 +/- 0.06 L(o))休息。我们还比较了青蛙和文献中哺乳动物肌肉的被动力-长度曲线,并证明青蛙的肌肉必须被拉伸到更长的长度才能产生被动力。青蛙肌肉相对柔顺的被动特性可能是该系统的一个关键特征,因为它允许肌肉在较长的长度下运作,并提高肌肉在跳跃过程中的力量产生能力。

相似文献

1
Muscle performance during frog jumping: influence of elasticity on muscle operating lengths.
Proc Biol Sci. 2010 May 22;277(1687):1523-30. doi: 10.1098/rspb.2009.2051. Epub 2010 Jan 27.
2
Probing the limits to muscle-powered accelerations: lessons from jumping bullfrogs.
J Exp Biol. 2003 Aug;206(Pt 15):2567-80. doi: 10.1242/jeb.00452.
4
Determining the influence of muscle operating length on muscle performance during frog swimming using a bio-robotic model.
Bioinspir Biomim. 2012 Sep;7(3):036018. doi: 10.1088/1748-3182/7/3/036018. Epub 2012 Jun 8.
5
Locomotor function shapes the passive mechanical properties and operating lengths of muscle.
Proc Biol Sci. 2014 Apr 9;281(1783):20132914. doi: 10.1098/rspb.2013.2914. Print 2014 May 22.
6
What drives activation-dependent shifts in the force-length curve?
Biol Lett. 2014 Sep;10(9). doi: 10.1098/rsbl.2014.0651.
7
Muscle function during jumping in frogs. II. Mechanical properties of muscle: implications for system design.
Am J Physiol. 1996 Aug;271(2 Pt 1):C571-8. doi: 10.1152/ajpcell.1996.271.2.C571.
8
Geared up to stretch: pennate muscle behavior during active lengthening.
J Exp Biol. 2014 Feb 1;217(Pt 3):376-81. doi: 10.1242/jeb.094383.
9
In vivo muscle force and muscle power during near-maximal frog jumps.
PLoS One. 2017 Mar 10;12(3):e0173415. doi: 10.1371/journal.pone.0173415. eCollection 2017.
10
Built for jumping: the design of the frog muscular system.
Science. 1994 Jan 21;263(5145):370-2. doi: 10.1126/science.8278808.

引用本文的文献

1
Torque-angle relationships of human toe flexor muscles highlight their capacity for propulsion in gait.
J Exp Biol. 2025 Jan 1;228(1). doi: 10.1242/jeb.249816. Epub 2025 Jan 10.
2
Comparative muscle anatomy of the anuran pelvis and hindlimb in relation to locomotor mode.
J Anat. 2024 Nov;245(5):751-774. doi: 10.1111/joa.14122. Epub 2024 Aug 9.
4
Simulation Analysis of Frog-Inspired Take-Off Performance Based on Different Structural Models.
Biomimetics (Basel). 2024 Mar 11;9(3):168. doi: 10.3390/biomimetics9030168.
5
The interaction of in vivo muscle operating lengths and passive stiffness in rat hindlimbs.
J Exp Biol. 2024 Mar 1;227(5). doi: 10.1242/jeb.246280. Epub 2024 Mar 11.
7
Evidence for multi-scale power amplification in skeletal muscle.
J Exp Biol. 2023 Nov 1;226(21). doi: 10.1242/jeb.246070. Epub 2023 Nov 3.
9
Muscle-tendon unit design and tuning for power enhancement, power attenuation, and reduction of metabolic cost.
J Biomech. 2023 May;153:111585. doi: 10.1016/j.jbiomech.2023.111585. Epub 2023 Apr 13.
10
Amphibious Miniature Soft Jumping Robot with On-Demand In-Flight Maneuver.
Adv Sci (Weinh). 2023 Jun;10(18):e2207493. doi: 10.1002/advs.202207493. Epub 2023 Apr 25.

本文引用的文献

1
ALLOMETRY AND JUMPING IN FROGS: HELPING THE TWAIN TO MEET.
Evolution. 1978 Sep;32(3):551-564. doi: 10.1111/j.1558-5646.1978.tb04598.x.
3
The giant muscle protein titin is an adjustable molecular spring.
Exerc Sport Sci Rev. 2006 Apr;34(2):50-3. doi: 10.1249/00003677-200604000-00002.
4
Take-off and landing forces in jumping frogs.
J Exp Biol. 2006 Jan;209(Pt 1):66-77. doi: 10.1242/jeb.01969.
5
Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles.
J Gen Physiol. 2005 Nov;126(5):461-80. doi: 10.1085/jgp.200509364. Epub 2005 Oct 17.
6
The length dependence of muscle active force: considerations for parallel elastic properties.
J Appl Physiol (1985). 2005 May;98(5):1666-73. doi: 10.1152/japplphysiol.01045.2004. Epub 2004 Dec 10.
7
Probing the limits to muscle-powered accelerations: lessons from jumping bullfrogs.
J Exp Biol. 2003 Aug;206(Pt 15):2567-80. doi: 10.1242/jeb.00452.
8
In vivo and in vitro heterogeneity of segment length changes in the semimembranosus muscle of the toad.
J Physiol. 2003 Jun 15;549(Pt 3):877-88. doi: 10.1113/jphysiol.2002.038018. Epub 2003 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验