Ivashchenko V I, Turchi P E A, Shevchenko V I
Institute of Problems of Material Science, NAS of Ukraine, Krzhyzhanovsky Street 3, 03142 Kyiv, Ukraine.
J Phys Condens Matter. 2009 Sep 30;21(39):395503. doi: 10.1088/0953-8984/21/39/395503. Epub 2009 Sep 8.
Ab initio calculations of the elastic constants for several cubic ordered structures of zirconium carbonitride (ZrC(x)N(1-x)) and zirconium-titanium carbide (Zr(x)Ti(1-x)C) alloys were carried out. The calculations of total and formation energies, bulk modulus and elastic constants as functions of composition were performed with an ab initio pseudo-potential method. The predicted equilibrium lattice parameters are slightly higher than those found experimentally (on average by 0.2-0.4%). The predicted formation energies indicate that the ZrC(x)N(1-x) alloys are stable even at 0 K in the whole concentration range, while the homogeneous Zr(x)Ti(1-x)C alloys can be stabilized only at high temperatures. Spinodal decomposition of the latter alloys into cubic domains takes place over a wide range of compositions and temperatures. For the carbonitrides, the shear modulus G, the Young's modulus E and the Poisson ratio σ reach an extremum for carbon-rich alloys, and this is attributed to a maximum value of the shear modulus C(44) that corresponds to a valence-electron concentration in the range of 8.2-8.3. This extremal behavior finds its origin in the response of the band structure of ZrC(x)N(1-x) alloys for 0≤x≤1, caused by the monoclinic strain that determines this shear modulus. In contrast, the other shear modulus [Formula: see text] does not exhibit any extremum over the whole composition range. These results are in contrast with those for Zr-Ti carbides for which the elastic properties gradually increase from ZrC to TiC.
对几种立方有序结构的碳氮化锆(ZrC(x)N(1 - x))和锆 - 钛碳化物(Zr(x)Ti(1 - x)C)合金的弹性常数进行了从头算计算。使用从头算赝势方法进行了总能量和形成能、体模量以及作为成分函数的弹性常数的计算。预测的平衡晶格参数略高于实验测得的值(平均高0.2 - 0.4%)。预测的形成能表明,ZrC(x)N(1 - x)合金在整个浓度范围内即使在0 K时也是稳定的,而均匀的Zr(x)Ti(1 - x)C合金仅在高温下才能稳定。后一种合金在很宽的成分和温度范围内会发生旋节分解成立方畴。对于碳氮化物,剪切模量G、杨氏模量E和泊松比σ对于富碳合金达到极值,这归因于对应于价电子浓度在8.2 - 8.3范围内的剪切模量C(44)的最大值。这种极值行为源于ZrC(x)N(1 - x)合金(0≤x≤1)的能带结构对由确定该剪切模量的单斜应变引起的响应。相比之下,另一个剪切模量[公式:见原文]在整个成分范围内没有表现出任何极值。这些结果与Zr - Ti碳化物的结果形成对比,对于Zr - Ti碳化物,其弹性性能从ZrC到TiC逐渐增加。