Chen Yajiang, Croitoru M D, Shanenko A A, Peeters F M
Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium.
J Phys Condens Matter. 2009 Oct 28;21(43):435701. doi: 10.1088/0953-8984/21/43/435701. Epub 2009 Oct 8.
It is well known that, in bulk, the solution of the Bogoliubov-de Gennes equations is the same whether or not the Hartree-Fock term is included. Here the Hartree-Fock potential is position independent and so gives the same contribution to both the single-electron energies and the Fermi level (the chemical potential). Thus, the single-electron energies measured from the Fermi level (they control the solution) stay the same. This is not the case for nanostructured superconductors, where quantum confinement breaks the translational symmetry and results in a position-dependent Hartree-Fock potential. In this case its contribution to the single-electron energies depends on the relevant quantum numbers. We numerically solved the Bogoliubov-de Gennes equations with the Hartree-Fock term for a clean superconducting nanocylinder and found a shift of the curve representing the thickness-dependent oscillations of the critical superconducting temperature to larger diameters.
众所周知,总体而言,无论是否包含哈特里 - 福克项,博戈留波夫 - 德热纳方程的解都是相同的。这里哈特里 - 福克势与位置无关,因此对单电子能量和费米能级(化学势)的贡献相同。所以,从费米能级测量的单电子能量(它们控制着解)保持不变。对于纳米结构超导体情况则不同,在那里量子限制打破了平移对称性并导致与位置有关的哈特里 - 福克势。在这种情况下,它对单电子能量的贡献取决于相关的量子数。我们对一个纯净的超导纳米圆柱体数值求解了包含哈特里 - 福克项的博戈留波夫 - 德热纳方程,发现代表临界超导温度随厚度振荡的曲线向更大直径方向移动。