Fleming A J, Netzer F P, Ramsey M G
Surface and Interface Physics, Institute of Physics, Karl-Franzens Universität Graz, Universitätsplatz 5, 8010 Graz, Austria.
J Phys Condens Matter. 2009 Nov 4;21(44):445003. doi: 10.1088/0953-8984/21/44/445003. Epub 2009 Oct 9.
The deposition in an ultrahigh vacuum of prototypical linear para-sexiphenyl (6P) molecules onto the anisotropic reconstructed surface of Cu(110)2 × 1-O presents an ideal system with reduced symmetry for investigation. A dynamic photoemission electron microscopy (PEEM) study of the nucleation and growth of 6P, combined with data obtained from static techniques, is shown to facilitate our understanding of the requirements for 6P nuclei formation and self-assembly into long anisotropic needles. High-rate image acquisitions in PEEM are shown to reveal dynamic phenomena, such as meta-stable layer de-wetting and nanostructure growth in real time, that are the result of nucleation and self-assembly processes. Furthermore, time dependent studies of the relaxation of the meta-stable layer give insights into the molecular diffusion kinetics, whereas temperature dependent studies allow nucleation energies and molecular binding energies to be quantitatively measured. The deposition of the first monolayer of material is found to assemble without the formation of islands until full coverage (1 ML) is achieved. The second layer fills homogeneously and remains in a liquid smectic phase until a total deposition of 1.95 ± 0.07 ML is reached, whereupon critical nuclei of 6P crystallize out of the 2D liquid layer. The maximum of the diffusion coefficient is estimated to be 2 × 10(-9) cm(2) s(-1). The resulting de-wetting of the meta-stable second layer rapidly increases the size of the nuclei while maintaining the anisotropic needle nanostructure shape. Probing the de-wetting layer reveals that 6P diffusion is 1D up to 100 °C. The nucleation energy and intermolecular binding energy are measured to be 675 meV and 2.1 eV, respectively.
在超高真空中将典型的线性对六苯基(6P)分子沉积到Cu(110)2×1 - O的各向异性重构表面上,提供了一个对称性降低的理想系统用于研究。一项关于6P成核与生长的动态光发射电子显微镜(PEEM)研究,结合从静态技术获得的数据,有助于我们理解6P核形成以及自组装成长的各向异性针状结构的条件。PEEM中的高速图像采集显示能实时揭示动态现象,如亚稳层去湿和纳米结构生长,这些是成核和自组装过程的结果。此外,对亚稳层弛豫的时间相关研究深入了解了分子扩散动力学,而温度相关研究则可以定量测量成核能和分子结合能。发现材料的第一层沉积时直到完全覆盖(1 ML)都不会形成岛状结构。第二层均匀填充并保持在液体近晶相中,直到总沉积量达到1.95±0.07 ML,此时6P的临界核从二维液体层中结晶出来。扩散系数的最大值估计为2×10(-9) cm(2) s(-1)。亚稳第二层的去湿作用迅速增大了核的尺寸,同时保持各向异性针状纳米结构形状。对去湿层的探测表明,在高达100°C时6P扩散是一维的。测得成核能和分子间结合能分别为675 meV和2.1 eV。