Dridi C, Barlier V, Chaabane H, Davenas J, Ben Ouada H
Institut Supérieur des Sciences Appliquées et de Technologie de Sousse BP 40, Cité Ettafala, 4003 Ibn Khaldoun Sousse, Tunisia. Laboratoire de Physique et Chimie des Interfaces, Faculté des Sciences de Monastir, 5000 Monastir, Tunisia.
Nanotechnology. 2008 Sep 17;19(37):375201. doi: 10.1088/0957-4484/19/37/375201. Epub 2008 Aug 1.
The photogeneration of charge carriers in spin-coated thin films of nanocrystalline (nc-)TiO(2) particles dispersed in a semiconducting polymer, poly(N-vinylcarbazole) (PVK), has been studied by photoluminescence and charge transport measurements. The solvent and the TiO(2) particle concentration have been selected to optimize the composite morphology. A large number of small domains leading to a large interface and an improved exciton dissociation could be obtained with tetrahydrofuran (THF). The charge transport mechanism and trap distribution at low and high voltage in ITO/nc-TiO(2):PVK/Al diodes in the dark could be identified by current-voltage measurements and impedance spectroscopy. The transport mechanism is space charge limited with an exponential trap distribution in the high voltage regime (1-4 V), whereas a Schottky process with a barrier height of about 0.9 eV is observed at low bias voltages (<1 V). The current-voltage characteristics under white illumination have shown a dramatic increase of the short circuit current density J(sc) and open circuit voltage V(oc) for a 30% TiO(2) volume content corresponding to the morphology exhibiting the best dispersion of TiO(2) particles. A degradation of the photovoltaic properties is induced at higher compositions by the formation of larger TiO(2) aggregates. A procedure has been developed to extract the physical parameters from the J-V characteristics in the dark and under illumination on the basis of an equivalent circuit. The variation of the solar cell parameters with the TiO(2) composition confirms that the photovoltaic response is optimum for 30% TiO(2) volume content. It is concluded that the photovoltaic properties of nc-TiO(2):PVK nanocomposites are controlled by the interfacial area between the donor and the acceptor material and are limited by the dispersion of the TiO(2) nanoparticles in the polymer.
通过光致发光和电荷传输测量,研究了分散在半导体聚合物聚(N-乙烯基咔唑)(PVK)中的纳米晶(nc-)TiO₂颗粒的旋涂薄膜中电荷载流子的光生现象。选择了溶剂和TiO₂颗粒浓度以优化复合形态。使用四氢呋喃(THF)可以获得大量导致大界面和改善激子解离的小区域。通过电流-电压测量和阻抗谱,可以确定ITO/nc-TiO₂:PVK/Al二极管在黑暗中低电压和高电压下的电荷传输机制和陷阱分布。在高电压范围(1-4 V)内,传输机制是空间电荷限制的,具有指数陷阱分布,而在低偏置电压(<1 V)下观察到势垒高度约为0.9 eV的肖特基过程。白色光照下的电流-电压特性表明,对于TiO₂体积含量为30%且对应于TiO₂颗粒分散最佳形态的情况,短路电流密度J(sc)和开路电压V(oc)显著增加。在较高组成下,由于形成较大的TiO₂聚集体,会导致光伏性能下降。已经开发出一种程序,基于等效电路从黑暗和光照下的J-V特性中提取物理参数。太阳能电池参数随TiO₂组成的变化证实,对于30%的TiO₂体积含量,光伏响应最佳。得出结论,nc-TiO₂:PVK纳米复合材料的光伏性能由供体和受体材料之间的界面面积控制,并受TiO₂纳米颗粒在聚合物中的分散限制。