Laboratoire de Spectrochimie Infrarouge et Raman (UMR CNRS A8516), Centre d'Etudes et de Recherches Lasers et Applications, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France.
Phys Chem Chem Phys. 2011 Sep 28;13(36):16272-81. doi: 10.1039/c1cp21042d. Epub 2011 Aug 11.
Binary mixtures of CO(2) with ethanol and with acetone are studied by computer simulation, including extensive free energy calculations done by the method of thermodynamic integration, at 313 K, i.e., above the critical point of CO(2) in the entire composition range. The calculations are repeated with three different models of acetone and ethanol, and two models of CO(2). Comparisons of the molar volume of the different systems as well as of the change of their molar volume accompanying the mixing of the two components with experimental data reveal that, among the model pairs tested, the best results are obtained if both components are described by the Transferable Potentials for Phase Equilibria (TraPPE) force field. Around the ethanol/acetone mole fraction of 0.05 all ethanol/CO(2) and almost all acetone/CO(2) model pairs considered predict the existence of a sharp maximum of the molar volume. Due to the lack of experimental data in this composition range, however, these predictions cannot be verified/falsified yet. Most of the model pairs considered also predict limited miscibility of these compounds, as seen from the positive values of the free energy change accompanying their mixing, and the miscibility gap is located at the same composition range as the aforementioned molar volume maximum.
二氧化碳分别与乙醇和丙酮的二元混合物通过计算机模拟进行了研究,包括在 313 K 下通过热力学积分方法进行的广泛自由能计算,这一温度高于二氧化碳在整个组成范围内的临界点。使用三种不同的丙酮和乙醇模型以及两种二氧化碳模型重复了这些计算。不同系统的摩尔体积以及两种组分混合伴随的摩尔体积变化与实验数据的比较表明,在所测试的模型对中,如果两种组分都用可传递的相平衡势(TraPPE)力场来描述,则可以获得最佳结果。在乙醇/丙酮摩尔分数约为 0.05 的地方,所有考虑的乙醇/二氧化碳和几乎所有的丙酮/二氧化碳模型对都预测摩尔体积会出现尖锐的最大值。然而,由于在这个组成范围内缺乏实验数据,因此这些预测尚无法得到验证/证伪。从伴随混合的自由能变化的正值来看,大多数考虑的模型对也预测了这些化合物的有限混溶性,而可混溶性间隙位于与上述摩尔体积最大值相同的组成范围内。