Department of Chemical Science, University of Cagliari-CSGI and CNBS, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042- Monserrato (CA), Italy.
Langmuir. 2011 Sep 20;27(18):11597-604. doi: 10.1021/la2024605. Epub 2011 Aug 23.
The points of zero charge/potential of proteins depend not only on pH but also on how they are measured. They depend also on background salt solution type and concentration. The protein isoelectric point (IEP) is determined by electrokinetical measurements, whereas the isoionic point (IIP) is determined by potentiometric titrations. Here we use potentiometric titration and zeta potential (ζ) measurements at different NaCl concentrations to study systematically the effect of ionic strength on the IEP and IIP of bovine serum albumin (BSA) aqueous solutions. It is found that high ionic strengths produce a shift of both points toward lower (IEP) and higher (IIP) pH values. This result was already reported more than 60 years ago. At that time, the only available theory was the purely electrostatic Debye-Hückel theory. It was not able to predict the opposite trends of IIP and IEP with ionic strength increase. Here, we extend that theory to admit both electrostatic and nonelectrostatic (NES) dispersion interactions. The use of a modified Poisson-Boltzmann equation for a simple model system (a charge regulated spherical colloidal particle in NaCl salt solutions), that includes these ion specific interactions, allows us to explain the opposite trends observed for isoelectric point (zero zeta potential) and isoionic point (zero protein charge) of BSA. At higher concentrations, an excess of the anion (with stronger NES interactions than the cation) is adsorbed at the surface due to an attractive ionic NES potential. This makes the potential relatively more negative. Consequently, the IEP is pushed toward lower pH. But the charge regulation condition means that the surface charge becomes relatively more positive as the surface potential becomes more negative. Consequently, the IIP (measuring charge) shifts toward higher pH as concentration increases, in the opposite direction from the IEP (measuring potential).
蛋白质的零电荷/电位不仅取决于 pH 值,还取决于测量方式。它们还取决于背景盐溶液的类型和浓度。蛋白质等电点(IEP)是通过电动测量确定的,而等离子点(IIP)是通过电位滴定确定的。在这里,我们使用电位滴定和不同 NaCl 浓度下的 ζ 电位测量来系统地研究离子强度对牛血清白蛋白(BSA)水溶液的 IEP 和 IIP 的影响。结果发现,高离子强度会导致两个点向较低(IEP)和较高(IIP)的 pH 值移动。这一结果早在 60 多年前就已经报道过。当时,唯一可用的理论是纯粹的静电 Debye-Hückel 理论。它无法预测随着离子强度的增加,IIP 和 IEP 的相反趋势。在这里,我们扩展了该理论,以承认静电和非静电(NES)色散相互作用。使用修改后的泊松-玻尔兹曼方程对一个简单的模型系统(带电荷调节的球形胶体粒子在 NaCl 盐溶液中)进行建模,该系统包括这些离子特异性相互作用,使我们能够解释 BSA 的等电点(零 ζ 电位)和等离子点(零蛋白质电荷)观察到的相反趋势。在较高的浓度下,由于吸引的离子 NES 势,阴离子(与阳离子相比具有更强的 NES 相互作用)会在表面上被吸附,从而使电势相对更负。因此,IEP 被推向更低的 pH 值。但电荷调节条件意味着,随着表面电势变得更负,表面电荷变得相对更正。因此,随着浓度的增加,IIP(测量电荷)向更高的 pH 值移动,与 IEP(测量电势)的方向相反。