Lacombe A, Kadari B, Beaudoin F, Barba D, Martin F, Ross G G
INRS-Énergie, Matériaux et Télécommunications, 1650 boulevard Lionel-Boulet, Varennes QC, J3X 1S2, Canada.
Nanotechnology. 2008 Nov 19;19(46):465702. doi: 10.1088/0957-4484/19/46/465702. Epub 2008 Oct 22.
Room-temperature electroluminescence (EL) has been measured at both macroscopic and microscopic levels from metal-oxide-semiconductor devices containing silicon nanocrystals (Si-nc) embedded in silicon dioxide (SiO(2)) obtained by high-temperature annealing (1050 and 1100 °C) after Si(+) ion implantation. It is found that spatially integrated (macroscopic) EL is dominated by a near-infrared band centered where the photoluminescence (PL) band of Si-nc (from 700 to 1000 nm) is located. However, on a microscopic scale, EL emission is inhomogeneous, the sample surface exhibiting many visible spots of micron-order diameter. EL spectra from a microscopic surface of ∼1 µm(2)(μEL) on visible spots have revealed dominant contributions between ∼550 and ∼650 nm, attributed to oxide defects. These spectral features rapidly decrease with distance from a bright spot, while lower-intensity near-infrared contributions (750-950 nm) remain unaffected up to relatively large distances before eventually becoming extinct. The macroscopic EL measurements can be explained as a superposition of the μEL and PL spectra. A luminescent mechanism is proposed in which charge carriers mostly tunnel through high-defect-density channels in the oxide, yielding bright visible spots, while Si-nc in these channels and their surroundings contribute to the luminescence by hosting electron-hole recombinations (EL) and/or exhibiting PL due to optical excitation from the nearby visible EL spot.
已在宏观和微观层面测量了室温电致发光(EL),该电致发光来自通过在硅(Si)离子注入后进行高温退火(1050和1100°C)获得的、包含嵌入二氧化硅(SiO₂)中的硅纳米晶体(Si-nc)的金属氧化物半导体器件。结果发现,空间积分(宏观)EL由一个近红外波段主导,该波段中心位于Si-nc的光致发光(PL)波段(700至1000nm)所在位置。然而,在微观尺度上,EL发射是不均匀的,样品表面呈现出许多直径为微米级的可见光斑。来自可见光斑上约1μm²微观表面的EL光谱(μEL)显示,在约550至约650nm之间有主要贡献,这归因于氧化物缺陷。这些光谱特征随着与亮点距离的增加而迅速减弱,而较低强度的近红外贡献(750 - 950nm)在距离相对较大之前保持不受影响,最终才消失。宏观EL测量结果可以解释为μEL和PL光谱的叠加。提出了一种发光机制,其中电荷载流子大多通过氧化物中高缺陷密度的通道隧穿,产生明亮的可见光斑,而这些通道及其周围的Si-nc通过承载电子 - 空穴复合(EL)和/或由于来自附近可见EL光斑的光激发而表现出PL,从而对发光做出贡献。