Faculté de Médecine, Division de Kinésiologie, Université Laval, Québec, QC, Canada.
Neuroscience. 2011 Nov 10;195:45-53. doi: 10.1016/j.neuroscience.2011.07.032. Epub 2011 Jul 30.
Following body rotation, optimal updating of the position of a memorized target is attained when retinal error is perceived and corrective saccade is performed. Thus, it appears that these processes may enable the calibration of the vestibular system by facilitating the sharing of information between both reference frames. Here, it is assessed whether having sensory information regarding body rotation in the target reference frame could enhance an individual's learning rate to predict the position of an earth-fixed target. During rotation, participants had to respond when they felt their body midline had crossed the position of the target and received knowledge of result. During practice blocks, for two groups, visual cues were displayed in the same reference frame of the target, whereas a third group relied on vestibular information (vestibular-only group) to predict the location of the target. Participants, unaware of the role of the visual cues (visual cues group), learned to predict the location of the target and spatial error decreased from 16.2 to 2.0°, reflecting a learning rate of 34.08 trials (determined from fitting a falling exponential model). In contrast, the group aware of the role of the visual cues (explicit visual cues group) showed a faster learning rate (i.e. 2.66 trials) but similar final spatial error 2.9°. For the vestibular-only group, similar accuracy was achieved (final spatial error of 2.3°), but their learning rate was much slower (i.e. 43.29 trials). Transferring to the Post-test (no visual cues and no knowledge of result) increased the spatial error of the explicit visual cues group (9.5°), but it did not change the performance of the vestibular group (1.2°). Overall, these results imply that cognition assists the brain in processing the sensory information within the target reference frame.
在进行身体旋转后,当感知到视网膜错误并进行矫正性扫视时,就可以实现对记忆目标位置的最佳更新。因此,这些过程似乎可以通过促进两个参考系之间的信息共享,从而实现前庭系统的校准。在这里,我们评估了在目标参考系中具有关于身体旋转的感觉信息是否可以提高个体预测地球固定目标位置的学习率。在旋转过程中,参与者在感觉到身体中线穿过目标位置时必须做出反应,并获得结果知识。在练习块中,对于两组,视觉线索显示在目标的相同参考系中,而第三组则依靠前庭信息(仅前庭组)来预测目标的位置。参与者不知道视觉线索的作用(视觉线索组),他们学会了预测目标的位置,空间误差从 16.2°降低到 2.0°,反映出学习率为 34.08 次试验(通过拟合下降指数模型确定)。相比之下,意识到视觉线索作用的组(显式视觉线索组)显示出更快的学习率(即 2.66 次试验),但最终空间误差相似 2.9°。对于仅前庭组,达到了相似的准确性(最终空间误差为 2.3°),但学习率要慢得多(即 43.29 次试验)。在进行后测(没有视觉线索和结果知识)时,显式视觉线索组的空间误差增加(9.5°),但这并没有改变前庭组的表现(1.2°)。总体而言,这些结果表明认知有助于大脑处理目标参考系内的感觉信息。