Weber C A, Salazar E P, Stewart S A, Thompson L H
Biomedical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550.
EMBO J. 1990 May;9(5):1437-47. doi: 10.1002/j.1460-2075.1990.tb08260.x.
Human ERCC2 genomic clones give efficient, stable correction of the nucleotide excision repair defect in UV5 Chinese hamster ovary cells. One clone having a breakpoint just 5' of classical promoter elements corrects only transiently, implicating further flanking sequences in stable gene expression. The nucleotide sequences of a cDNA clone and genomic flanking regions were determined. The ERCC2 translated amino acid sequence has 52% identity (73% homology) with the yeast nucleotide excision repair protein RAD3. RAD3 is essential for cell viability and encodes a protein that is a single-stranded DNA dependent ATPase and an ATP dependent helicase. The similarity of ERCC2 and RAD3 suggests a role for ERCC2 in both cell viability and DNA repair and provides the first insight into the biochemical function of a mammalian nucleotide excision repair gene.