Biochemical Engineering Group, Karl-Winnacker-Institut, DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany.
Colloids Surf B Biointerfaces. 2011 Dec 1;88(2):539-51. doi: 10.1016/j.colsurfb.2011.07.044. Epub 2011 Jul 26.
The development of new enzyme immobilization techniques that do not affect catalytic activity or conformation of a protein is an important research task in biotechnology including biosensor applications and heterogeneous reaction systems. One of the most promising approaches for controlled protein immobilization is based on the immobilized metal ion affinity chromatography (IMAC) principle originally developed for protein purification. Here we describe the current status and future perspectives of immobilization of His-tagged proteins on electrode surfaces. Recombinant proteins comprising histidine-tags or histidine rich native proteins have a strong affinity to transition metal ions. For metal ion immobilization at the electrode surface different matrices can be used such as self-assembled monolayers or conductive polymers. This specific technique allows a reversible immobilization of histidine-tagged proteins at electrodes in a defined orientation which is an important prerequisite for efficient electron transfer between the electrode and the biomolecule. Any application requiring immobilized biocatalysts on electrodes can make use of this immobilization approach, making future biosensors and biocatalytic technologies more sensitive, simpler, reusable and less expensive while only requiring mild enzyme modifications.
开发新的酶固定化技术,不影响蛋白质的催化活性或构象,是生物技术的一个重要研究任务,包括生物传感器应用和非均相反应系统。一种最有前途的蛋白质控制固定化方法是基于最初为蛋白质纯化开发的固定化金属离子亲和层析(IMAC)原理。在这里,我们描述了在电极表面固定组氨酸标记蛋白的现状和未来展望。包含组氨酸标签或富含组氨酸的天然蛋白的重组蛋白对过渡金属离子具有很强的亲和力。对于金属离子在电极表面的固定,可以使用不同的基质,如自组装单层或导电聚合物。这种特定的技术允许组氨酸标记蛋白在电极上以特定的方向可逆固定,这是电极和生物分子之间有效电子转移的重要前提。任何需要在电极上固定化生物催化剂的应用都可以利用这种固定化方法,使未来的生物传感器和生物催化技术更加敏感、简单、可重复使用且成本更低,同时只需要对酶进行温和的修饰。