Suppr超能文献

从原子和残基水平模型预测刚性蛋白质的流体力学和其他溶液性质。

Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models.

机构信息

Departamento de Química Física, Facultad de Química, Universidad de Murcia, Murcia, Spain.

出版信息

Biophys J. 2011 Aug 17;101(4):892-8. doi: 10.1016/j.bpj.2011.06.046.

Abstract

Here we extend the ability to predict hydrodynamic coefficients and other solution properties of rigid macromolecular structures from atomic-level structures, implemented in the computer program HYDROPRO, to models with lower, residue-level resolution. Whereas in the former case there is one bead per nonhydrogen atom, the latter contains one bead per amino acid (or nucleotide) residue, thus allowing calculations when atomic resolution is not available or coarse-grained models are preferred. We parameterized the effective hydrodynamic radius of the elements in the atomic- and residue-level models using a very large set of experimental data for translational and rotational coefficients (intrinsic viscosity and radius of gyration) for >50 proteins. We also extended the calculations to very large proteins and macromolecular complexes, such as the whole 70S ribosome. We show that with proper parameterization, the two levels of resolution yield similar and rather good agreement with experimental data. The new version of HYDROPRO, in addition to considering various computational and modeling schemes, is far more efficient computationally and can be handled with the use of a graphical interface.

摘要

在这里,我们将计算机程序 HYDROPRO 中预测刚性高分子结构的流体动力系数和其他溶液性质的能力扩展到具有较低分辨率的残基水平模型。在前一种情况下,每个非氢原子有一个珠,后一种情况下每个氨基酸(或核苷酸)残基有一个珠,从而允许在没有原子分辨率或需要使用粗粒度模型时进行计算。我们使用大量实验数据对原子和残基水平模型中元素的有效流体动力半径进行了参数化,这些数据包括>50 种蛋白质的平移和旋转系数(特性粘度和回转半径)。我们还将计算扩展到非常大的蛋白质和大分子复合物,如整个 70S 核糖体。我们表明,通过适当的参数化,这两种分辨率产生相似且相当好的与实验数据的一致性。新版本的 HYDROPRO 除了考虑各种计算和建模方案外,在计算效率上也有了很大的提高,并且可以使用图形界面进行处理。

相似文献

2
Hydrodynamic Modeling and Its Application in AUC.
Methods Enzymol. 2015;562:81-108. doi: 10.1016/bs.mie.2015.04.010. Epub 2015 Jul 9.
3
Calculation of hydrodynamic properties of globular proteins from their atomic-level structure.
Biophys J. 2000 Feb;78(2):719-30. doi: 10.1016/S0006-3495(00)76630-6.
4
Hydrodynamic modeling: the solution conformation of macromolecules and their complexes.
Methods Cell Biol. 2008;84:327-73. doi: 10.1016/S0091-679X(07)84012-X.
6
Modeling the hydration of proteins: prediction of structural and hydrodynamic parameters from X-ray diffraction and scattering data.
Eur Biophys J. 2003 Aug;32(5):487-502. doi: 10.1007/s00249-003-0293-z. Epub 2003 Apr 25.
7
Hydrodynamic Properties of Biomacromolecules and Macromolecular Complexes: Concepts and Methods. A Tutorial Mini-review.
J Mol Biol. 2020 Apr 17;432(9):2930-2948. doi: 10.1016/j.jmb.2019.12.027. Epub 2019 Dec 24.
8
9
GRPY: An Accurate Bead Method for Calculation of Hydrodynamic Properties of Rigid Biomacromolecules.
Biophys J. 2018 Sep 4;115(5):782-800. doi: 10.1016/j.bpj.2018.07.015. Epub 2018 Jul 24.

引用本文的文献

1
Molecular properties and intramolecular interactions of peptide-conjugated phosphorodiamidate morpholino oligonucleotides.
Mol Ther Nucleic Acids. 2025 Aug 14;36(3):102685. doi: 10.1016/j.omtn.2025.102685. eCollection 2025 Sep 9.
3
Bead model hydrodynamics: an in-depth comparison between GRPY and ZENO.
Eur Biophys J. 2025 May 29. doi: 10.1007/s00249-025-01758-8.
4
Determining the effects of pseudouridine incorporation on human tRNAs.
EMBO J. 2025 Apr 29. doi: 10.1038/s44318-025-00443-y.
5
Glycosylation Weakens Skp1 Homodimerization in by Interrupting a Fuzzy Interaction.
Biochemistry. 2025 May 20;64(10):2262-2279. doi: 10.1021/acs.biochem.4c00859. Epub 2025 Apr 29.
6
Accurate Predictions of Molecular Properties of Proteins via Graph Neural Networks and Transfer Learning.
J Chem Theory Comput. 2025 May 13;21(9):4830-4845. doi: 10.1021/acs.jctc.4c01682. Epub 2025 Apr 24.
7
Ayu: a machine intelligence tool for identification of extracellular proteins in the marine secretome.
Nat Commun. 2025 Mar 21;16(1):2793. doi: 10.1038/s41467-025-57974-5.
8
Residue Interactions Guide Translational Diffusion of Proteins.
J Phys Chem B. 2025 Mar 6;129(9):2493-2504. doi: 10.1021/acs.jpcb.4c06069. Epub 2025 Feb 25.
9
Mapping Hsp104 interactions using cross-linking mass spectrometry.
FEBS Open Bio. 2025 Jun;15(6):922-939. doi: 10.1002/2211-5463.70007. Epub 2025 Feb 24.
10
Structural insights into tecovirimat antiviral activity and poxvirus resistance.
Nat Microbiol. 2025 Mar;10(3):734-748. doi: 10.1038/s41564-025-01936-6. Epub 2025 Feb 12.

本文引用的文献

1
Intrinsic Viscosity of Proteins and Platonic Solids by Boundary Element Methods.
J Chem Theory Comput. 2006 Sep;2(5):1416-28. doi: 10.1021/ct600062y.
2
Striking Effects of Hydrodynamic Interactions on the Simulated Diffusion and Folding of Proteins.
J Chem Theory Comput. 2009 Feb 10;5(2):242-56. doi: 10.1021/ct800499p.
6
3D Brownian diffusion of submicron-sized particle clusters.
ACS Nano. 2009 Oct 27;3(10):3326-34. doi: 10.1021/nn900902b.
7
Intrinsic viscosity of bead models for macromolecules and nanoparticles.
Eur Biophys J. 2010 Feb;39(3):381-8. doi: 10.1007/s00249-009-0405-5. Epub 2009 Feb 6.
8
Hydrodynamic modeling: the solution conformation of macromolecules and their complexes.
Methods Cell Biol. 2008;84:327-73. doi: 10.1016/S0091-679X(07)84012-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验