García De La Torre J, Huertas M L, Carrasco B
Departamento de Química Física, Facultad de Química, Universidad de Murcia, 30071 Murcia, Spain.
Biophys J. 2000 Feb;78(2):719-30. doi: 10.1016/S0006-3495(00)76630-6.
The solution properties, including hydrodynamic quantities and the radius of gyration, of globular proteins are calculated from their detailed, atomic-level structure, using bead-modeling methodologies described in our previous article (, Biophys. J. 76:3044-3057). We review how this goal has been pursued by other authors in the past. Our procedure starts from a list of atomic coordinates, from which we build a primary hydrodynamic model by replacing nonhydrogen atoms with spherical elements of some fixed radius. The resulting particle, consisting of overlapping spheres, is in turn represented by a shell model treated as described in our previous work. We have applied this procedure to a set of 13 proteins. For each protein, the atomic element radius is adjusted, to fit all of the hydrodynamic properties, taking values close to 3 A, with deviations that fall within the error of experimental data. Some differences are found in the atomic element radius found for each protein, which can be explained in terms of protein hydration. A computational shortcut makes the procedure feasible, even in personal computers. All of the model-building and calculations are carried out with a HYDROPRO public-domain computer program.
利用我们之前文章(《生物物理杂志》76:3044 - 3057)中描述的珠子建模方法,从球状蛋白质详细的原子水平结构计算其溶液性质,包括流体动力学量和回转半径。我们回顾了过去其他作者是如何实现这一目标的。我们的程序从原子坐标列表开始,通过用一些固定半径的球形元素替换非氢原子来构建一个初级流体动力学模型。由此产生的由重叠球体组成的粒子,又由我们之前工作中描述的壳模型来表示。我们已将此程序应用于一组13种蛋白质。对于每种蛋白质,调整原子元素半径以拟合所有流体动力学性质,其取值接近3埃,偏差在实验数据误差范围内。在为每种蛋白质找到的原子元素半径中发现了一些差异,这可以用蛋白质水化来解释。一种计算捷径使该程序即使在个人计算机上也可行。所有的模型构建和计算都使用HYDROPRO公共领域计算机程序进行。