Suppr超能文献

低能β(-)和电子发射体(161)Tb 可作为(177)Lu 的替代物,用于靶向放射性核素治疗。

The low-energy β(-) and electron emitter (161)Tb as an alternative to (177)Lu for targeted radionuclide therapy.

机构信息

Institute for Radiochemistry, Technical University of Munich, Walther-Meissner-Strasse 3, 85748 Garching, Germany.

出版信息

Nucl Med Biol. 2011 Aug;38(6):917-24. doi: 10.1016/j.nucmedbio.2011.02.007. Epub 2011 Apr 20.

Abstract

INTRODUCTION

The low-energy β(-) emitter (161)Tb is very similar to (177)Lu with respect to half-life, beta energy and chemical properties. However, (161)Tb also emits a significant amount of conversion and Auger electrons. Greater therapeutic effect can therefore be expected in comparison to (177)Lu. It also emits low-energy photons that are useful for gamma camera imaging.

METHODS

The (160)Gd(n,γ)(161)Gd→(161)Tb production route was used to produce (161)Tb by neutron irradiation of massive (160)Gd targets (up to 40 mg) in nuclear reactors. A semiautomated procedure based on cation exchange chromatography was developed and applied to isolate no carrier added (n.c.a.) (161)Tb from the bulk of the (160)Gd target and from its stable decay product (161)Dy. (161)Tb was used for radiolabeling DOTA-Tyr3-octreotate; the radiolabeling profile was compared to the commercially available n.c.a. (177)Lu. A (161)Tb Derenzo phantom was imaged using a small-animal single-photon emission computed tomography camera.

RESULTS

Up to 15 GBq of (161)Tb was produced by long-term irradiation of Gd targets. Using a cation exchange resin, we obtained 80%-90% of the available (161)Tb with high specific activity, radionuclide and chemical purity and in quantities sufficient for therapeutic applications. The (161)Tb obtained was of the quality required to prepare (161)Tb-DOTA-Tyr3-octreotate.

CONCLUSIONS

We were able to produce (161)Tb in n.c.a. form by irradiating highly enriched (160)Gd targets; it can be obtained in the quantity and quality required for the preparation of (161)Tb-labeled therapeutic agents.

摘要

简介

低能β(-)发射器(161)Tb 在半衰期、β能量和化学性质方面与(177)Lu 非常相似。然而,(161)Tb 还会发射大量的转换电子和俄歇电子。因此,与(177)Lu 相比,(161)Tb 可以产生更大的治疗效果。它还发射低能光子,可用于伽马相机成像。

方法

采用(160)Gd(n,γ)(161)Gd→(161)Tb 生产途径,通过在核反应堆中对大量(160)Gd 靶(最高 40mg)进行中子辐照来生产(161)Tb。开发并应用了一种基于阳离子交换色谱的半自动程序,从(160)Gd 靶及其稳定的衰变产物(161)Dy 中分离出无载体添加(n.c.a.)(161)Tb。(161)Tb 用于标记 DOTA-Tyr3-octreotate;与市售的 n.c.a.(177)Lu 进行了放射性标记比较。使用小动物单光子发射计算机断层扫描相机对(161)Tb Derenzo 体模进行成像。

结果

通过对 Gd 靶进行长期辐照,可生产多达 15GBq 的(161)Tb。使用阳离子交换树脂,我们以高比活度、放射性核素和化学纯度获得了 80%-90%的可用(161)Tb,且数量足以满足治疗应用的需求。获得的(161)Tb 质量符合制备(161)Tb-DOTA-Tyr3-octreotate 的要求。

结论

我们能够通过辐照高浓缩(160)Gd 靶来以非放射性形式生产(161)Tb;可以获得制备(161)Tb 标记治疗剂所需的数量和质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验