Hindié Elif, Zanotti-Fregonara Paolo, Quinto Michele A, Morgat Clément, Champion Christophe
CHU de Bordeaux, Service de Médecine Nucléaire, CNRS-UMR 5287, LabEx TRAIL, Université de Bordeaux, Pessac, France; and
CHU de Bordeaux, Service de Médecine Nucléaire, CNRS-UMR 5287, LabEx TRAIL, Université de Bordeaux, Pessac, France; and.
J Nucl Med. 2016 May;57(5):759-64. doi: 10.2967/jnumed.115.170423. Epub 2016 Feb 9.
Radiopharmaceutical therapy, traditionally limited to refractory metastatic cancer, is being increasingly used at earlier stages, such as for treating minimal residual disease. The aim of this study was to compare the effectiveness of (90)Y, (177)Lu, (111)In, and (161)Tb at irradiating micrometastases. (90)Y and (177)Lu are widely used β(-)-emitting radionuclides. (161)Tb is a medium-energy β(-) radionuclide that is similar to (177)Lu but emits a higher percentage of conversion and Auger electrons. (111)In emits γ-photons and conversion and Auger electrons.
We used the Monte Carlo code CELLDOSE to assess electron doses from a uniform distribution of (90)Y, (177)Lu, (111)In, or (161)Tb in spheres with diameters ranging from 10 mm to 10 μm. Because these isotopes differ in electron energy per decay, the doses were compared assuming that 1 MeV was released per μm(3), which would result in 160 Gy if totally absorbed.
In a 10-mm sphere, the doses delivered by (90)Y, (177)Lu, (111)In, and (161)Tb were 96.5, 152, 153, and 152 Gy, respectively. The doses decreased along with the decrease in sphere size, and more abruptly so for (90)Y. In a 100-μm metastasis, the dose delivered by (90)Y was only 1.36 Gy, compared with 24.5 Gy for (177)Lu, 38.9 Gy for (111)In, and 44.5 Gy for (161)Tb. In cell-sized spheres, the dose delivered by (111)In and (161)Tb was higher than that of (177)Lu. For instance, in a 10-μm cell, (177)Lu delivered 3.92 Gy, compared with 22.8 Gy for (111)In and 14.1 Gy for (161)Tb.
(177)Lu, (111)In, and (161)Tb might be more appropriate than (90)Y for treating minimal residual disease. (161)Tb is a promising radionuclide because it combines the advantages of a medium-energy β(-) emission with those of Auger electrons and emits fewer photons than (111)In.
放射性药物治疗传统上仅限于难治性转移性癌症,现在越来越多地用于疾病早期阶段,如治疗微小残留病。本研究的目的是比较钇-90(90Y)、镥-177(177Lu)、铟-111(111In)和铽-161(161Tb)对微小转移灶的照射效果。90Y和177Lu是广泛使用的发射β-射线的放射性核素。161Tb是一种中能β-放射性核素,与177Lu相似,但转换电子和俄歇电子发射百分比更高。111In发射γ光子、转换电子和俄歇电子。
我们使用蒙特卡罗代码CELLDOSE来评估直径从10毫米到10微米的球体中均匀分布的90Y、177Lu、111In或161Tb产生的电子剂量。由于这些同位素每次衰变释放的电子能量不同,假设每立方微米释放1兆电子伏能量(若完全吸收则为160戈瑞)来比较剂量。
在直径10毫米的球体中,90Y、177Lu、111In和161Tb产生的剂量分别为96.5、152、153和152戈瑞。剂量随球体尺寸减小而降低,90Y降低得更明显。在直径100微米的转移灶中,90Y产生的剂量仅为1.36戈瑞,而177Lu为24.5戈瑞,111In为38.9戈瑞,161Tb为44.5戈瑞。在细胞大小的球体中,111In和161Tb产生的剂量高于177Lu。例如,在直径10微米的细胞中,177Lu产生3.92戈瑞,111In为22.8戈瑞,161Tb为14.1戈瑞。
对于治疗微小残留病,177Lu、111In和161Tb可能比90Y更合适。161Tb是一种有前景的放射性核素,因为它兼具中能β-发射的优势和俄歇电子的优势,且发射的光子比111In少。