Suppr超能文献

用于乳腺X线摄影增强的非线性锐化掩膜

Nonlinear unsharp masking for mammogram enhancement.

作者信息

Panetta Karen, Zhou Yicong, Agaian Sos, Jia Hongwei

机构信息

Department of Electrical and Computer Engineering, Tufts University, Medford, MA 02155, USA.

出版信息

IEEE Trans Inf Technol Biomed. 2011 Nov;15(6):918-28. doi: 10.1109/TITB.2011.2164259. Epub 2011 Aug 12.

Abstract

This paper introduces a new unsharp masking (UM) scheme, called nonlinear UM (NLUM), for mammogram enhancement. The NLUM offers users the flexibility 1) to embed different types of filters into the nonlinear filtering operator; 2) to choose different linear or nonlinear operations for the fusion processes that combines the enhanced filtered portion of the mammogram with the original mammogram; and 3) to allow the NLUM parameter selection to be performed manually or by using a quantitative enhancement measure to obtain the optimal enhancement parameters. We also introduce a new enhancement measure approach, called the second-derivative-like measure of enhancement, which is shown to have better performance than other measures in evaluating the visual quality of image enhancement. The comparison and evaluation of enhancement performance demonstrate that the NLUM can improve the disease diagnosis by enhancing the fine details in mammograms with no a priori knowledge of the image contents. The human-visual-system-based image decomposition is used for analysis and visualization of mammogram enhancement.

摘要

本文介绍了一种用于乳腺X线图像增强的新的模糊掩蔽(UM)方案,称为非线性UM(NLUM)。NLUM为用户提供了以下灵活性:1)将不同类型的滤波器嵌入到非线性滤波算子中;2)为将乳腺X线图像的增强滤波部分与原始乳腺X线图像相结合的融合过程选择不同的线性或非线性操作;3)允许手动执行NLUM参数选择或使用定量增强度量来获得最佳增强参数。我们还引入了一种新的增强度量方法,称为类二阶导数增强度量,在评估图像增强的视觉质量方面,它比其他度量表现更好。增强性能的比较和评估表明,NLUM可以在无需先验图像内容知识的情况下,通过增强乳腺X线图像中的细微细节来改善疾病诊断。基于人类视觉系统的图像分解用于乳腺X线图像增强的分析和可视化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验