Suppr超能文献

基于非下采样剪切波变换和梯度域引导滤波的X射线图像增强

X-ray Image Enhancement Based on Nonsubsampled Shearlet Transform and Gradient Domain Guided Filtering.

作者信息

Zhao Tao, Zhang Si-Xiang

机构信息

School of Mechanical Engineering, Hebei University of Technology, Tianjin 300131, China.

Department of Mechanical Engineering, Zhonghuan Information College Tianjin University of Technology, Tianjin 300380, China.

出版信息

Sensors (Basel). 2022 May 27;22(11):4074. doi: 10.3390/s22114074.

Abstract

In this paper, we propose an image enhancement algorithm combining non-subsampled shearlet transform and gradient-domain guided filtering to address the problems of low resolution, noise amplification, missing details, and weak edge gradient retention in the X-ray image enhancement process. First, we decompose histogram equalization and nonsubsampled shearlet transform to the original image. We get a low-frequency sub-band and several high-frequency sub-bands. Adaptive gamma correction with weighting distribution is used for the low-frequency sub-band to highlight image contour information and improve the overall contrast of the image. The gradient-domain guided filtering is conducted for the high-frequency sub-bands to suppress image noise and highlight detail and edge information. Finally, we reconstruct all the effectively processed sub-bands by the inverse non-subsampled shearlet transform and obtain the final enhanced image. The experimental results show that the proposed algorithm has good results in X-ray image enhancement, and its objective index also has evident advantages over some classical algorithms.

摘要

在本文中,我们提出一种结合非下采样剪切波变换和梯度域引导滤波的图像增强算法,以解决X射线图像增强过程中存在的分辨率低、噪声放大、细节缺失和边缘梯度保留能力弱等问题。首先,我们对原始图像进行直方图均衡化和非下采样剪切波变换分解,得到一个低频子带和几个高频子带。对低频子带采用加权分布的自适应伽马校正,以突出图像轮廓信息并提高图像的整体对比度。对高频子带进行梯度域引导滤波,以抑制图像噪声并突出细节和边缘信息。最后,通过非下采样剪切波逆变换对所有有效处理后的子带进行重构,得到最终的增强图像。实验结果表明,所提算法在X射线图像增强方面具有良好的效果,其客观指标相对于一些经典算法也具有明显优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cce/9185538/68f0caa7f34f/sensors-22-04074-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验