University of Greifswald, Greifswald.
IEEE/ACM Trans Comput Biol Bioinform. 2012;9(2):395-407. doi: 10.1109/TCBB.2011.115. Epub 2011 Aug 4.
Split networks are commonly used to visualize collections of bipartitions, also called splits, of a finite set. Such collections arise, for example, in evolutionary studies. Split networks can be viewed as a generalization of phylogenetic trees and may be generated using the SplitsTree package. Recently, the NeighborNet method for generating split networks has become rather popular, in part because it is guaranteed to always generate a circular split system, which can always be displayed by a planar split network. Even so, labels must be placed on the “outside” of the network, which might be problematic in some applications. To help circumvent this problem, it can be helpful to consider so-called flat split systems, which can be displayed by planar split networks where labels are allowed on the inside of the network too. Here, we present a new algorithm that is guaranteed to compute a minimal planar split network displaying a flat split system in polynomial time, provided the split system is given in a certain format. We will also briefly discuss two heuristics that could be useful for analyzing phylogeographic data and that allow the computation of flat split systems in this format in polynomial time.
分裂网络通常用于可视化有限集合的二分划集,也称为分裂。这种集合在进化研究中经常出现。分裂网络可以被视为系统发生树的一种推广,并且可以使用 SplitsTree 包生成。最近,生成分裂网络的邻接法变得相当流行,部分原因是它保证总是生成一个循环的分裂系统,这个系统总是可以通过平面分裂网络来表示。即便如此,标签仍必须放在网络的“外部”,在某些应用中可能会出现问题。为了帮助解决这个问题,可以考虑所谓的平面分裂系统,它可以通过允许在网络内部放置标签的平面分裂网络来表示。在这里,我们提出了一种新的算法,它保证可以在多项式时间内计算出一个显示平面分裂系统的最小平面分裂网络,前提是分裂系统以特定格式给出。我们还将简要讨论两种启发式算法,它们可能对分析生物地理学数据有用,并允许以这种格式在多项式时间内计算平面分裂系统。