Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
J Phys Chem A. 2011 Oct 27;115(42):11696-714. doi: 10.1021/jp202042k. Epub 2011 Sep 28.
The open-chain tetrapyrrole compound bilirubin was investigated in chloroform and dimethyl sulfoxide solutions by liquid-state NMR and as solid by (1)H, (13)C, and (15)N magic-angle spinning (MAS) solid-state NMR spectroscopy. Density functional theory (DFT) calculations were performed to interpret the data, using the B3LYP exchange-correlation functional to optimize geometries and to compute NMR chemical shieldings by the gauge-including atomic orbital method. The dependence of geometries and chemical shieldings on the size of the basis sets was investigated for the reference molecules tetramethylsilane, NH(3), and H(2)O, and for bilirubin as a monomer and in clusters consisting of up to six molecules. In order to assess the intrinsic errors of the B3LYP approximation in calculating NMR shieldings, complete basis set estimates were obtained for the nuclear shielding values of the reference molecules. The experimental liquid-state NMR data of bilirubin are well reproduced by a monomeric bilirubin molecule using the 6-311+G(2d,p) basis set for geometry optimization and for calculating chemical shieldings. To simulate the bilirubin crystal, a hexameric model was required. It was constructed from geometry-optimized monomers using information from the X-ray structure of bilirubin to fix the monomeric entities in space and refined by partial optimization. Combining experimental (1)H-(13)C and (1)H-(15)N NMR correlation spectroscopy and density functional theory, almost complete sets of (1)H, (13)C, and (15)N chemical shift assignments were obtained for both liquid and solid states. It is shown that monomeric bilirubin in chloroform solution is formed by 3-vinyl anti conformers, while bilirubin crystals are formed by 3-vinyl syn conformers. This conformational change leads to characteristic differences between the liquid- and solid-state NMR resonances.
在氯仿和二甲基亚砜溶液中,通过液态 NMR 和固态 (1)H、(13)C 和 (15)N 魔角旋转 (MAS) 固态 NMR 光谱研究了开链四吡咯化合物胆红素。通过使用 B3LYP 交换相关函数来优化几何形状,并通过包含原子轨道的量规方法计算 NMR 化学屏蔽,进行了密度泛函理论 (DFT) 计算以解释数据。研究了参考分子四甲基硅烷、NH(3)和 H(2)O 以及单体胆红素以及由多达六个分子组成的簇的几何形状和化学屏蔽对基组大小的依赖性。为了评估 B3LYP 近似在计算 NMR 屏蔽中的固有误差,获得了参考分子的核屏蔽值的完全基组估计值。使用 6-311+G(2d,p)基组进行几何优化和计算化学屏蔽,使用 6-311+G(2d,p)基组对单体胆红素分子很好地再现了实验液态 NMR 数据。为了模拟胆红素晶体,需要一个六聚体模型。它是从几何优化的单体构建的,使用胆红素的 X 射线结构的信息来固定单体在空间中的位置,并通过部分优化进行细化。通过实验 (1)H-(13)C 和 (1)H-(15)N NMR 相关光谱和密度泛函理论的组合,几乎为液态和固态获得了完整的 (1)H、(13)C 和 (15)N 化学位移分配。结果表明,在氯仿溶液中的单体胆红素是由 3-乙烯基反构形成的,而胆红素晶体是由 3-乙烯基顺构形成的。这种构象变化导致了液态和固态 NMR 共振之间的特征差异。