Frost H M
Department of Orthopaedic Surgery, Southern Colorado Clinic, Pueblo 81004.
Anat Rec. 1990 Apr;226(4):414-22. doi: 10.1002/ar.1092260403.
Basic multicellular unit (BMU)-based remodeling of lamellar bone causes bone turnover, net gains and losses of bone on some bone surfaces or "envelopes," and a remodeling space comprising bone temporarily absent due to evolving resorption spaces and incomplete refilling of them by new bone. Those features depend a) on how many new BMU arise annually, b) on how much bone each BMU has resorbed and c) formed upon its completion, and d) on how long the typical BMU takes to become completed. Because a, b, and c have limiting or maximal values in life that direct and/or indirect effects of mechanical usage of the skeleton can change, the theory presented here derives mechanical usage functions that express what fractions of those maxima a given mechanical usage history allows to happen. The theory predicts some changes in bone formation, resorption, balance, turnover, and remodeling space that depend on how remodeling responds to the vigor of a subject's mechanical usage. The theory can predict specific effects of specific mechanical challenges that experiments can test, and it fits abundant published evidence. As the kernel of a new approach to the problem it awaits critique and refinement by others. It plus the 3-way rule can redefine Wolff's law conceptually and also in mathematical and quantifiable form.
基于基本多细胞单位(BMU)的板层骨重塑会导致骨转换,在某些骨表面或“骨膜”上出现骨的净增减,以及一个重塑空间,该空间包含由于吸收腔的演变和新骨对其不完全填充而暂时缺失的骨。这些特征取决于:a)每年产生的新BMU数量;b)每个BMU吸收的骨量;c)完成时形成的骨量;d)典型BMU完成所需的时间。由于a、b和c在生命中具有极限值或最大值,而骨骼机械使用的直接和/或间接影响可以改变这些值,因此本文提出的理论推导了机械使用函数,这些函数表达了给定机械使用历史允许达到这些最大值的比例。该理论预测了骨形成、吸收、平衡、转换和重塑空间的一些变化,这些变化取决于重塑对个体机械使用强度的反应。该理论可以预测实验可以测试的特定机械挑战的具体影响,并且与大量已发表的证据相符。作为解决该问题的新方法的核心,它有待他人的批评和完善。它与三分法则可以在概念上以及数学和可量化形式上重新定义沃尔夫定律。