College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85721, USA.
Opt Lett. 2011 Aug 15;36(16):3076-8. doi: 10.1364/OL.36.003076.
Orthogonal polynomials are routinely used to represent complex surfaces over a specified domain. In optics, Zernike polynomials have found wide application in optical testing, wavefront sensing, and aberration theory. This set is orthogonal over the continuous unit circle matching the typical shape of optical components and pupils. A variety of techniques has been developed to scale Zernike expansion coefficients to concentric circular subregions to mimic, for example, stopping down the aperture size of an optical system. Here, similar techniques are used to rescale the expansion coefficients to new pupil sizes for a related orthogonal set: the pseudo-Zernike polynomials.
正交多项式通常用于表示指定域上的复杂曲面。在光学中,泽尼克多项式在光学测试、波前传感和像差理论中得到了广泛的应用。该集合在连续的单位圆上是正交的,与光学元件和光瞳的典型形状相匹配。已经开发了多种技术来对泽尼克展开系数进行缩放,以模拟同心圆形子区域,例如缩小光学系统的孔径尺寸。在这里,类似的技术用于将扩展系数重新调整为新的光瞳尺寸,以适应相关的正交集:伪泽尼克多项式。