Suppr超能文献

用于聚二甲基硅氧烷和石英微流控器件的物理吸附表面涂层。

Physisorbed surface coatings for poly(dimethylsiloxane) and quartz microfluidic devices.

机构信息

Experimental Biophysics and Applied Nanoscience, Bielefeld University, 33615 Bielefeld, Germany.

出版信息

Anal Bioanal Chem. 2011 Oct;401(7):2113-22. doi: 10.1007/s00216-011-5301-z. Epub 2011 Aug 17.

Abstract

Surface modifications of microfluidic devices are of essential importance for successful bioanalytical applications. Here, we investigate three different coatings for quartz and poly(dimethylsiloxane) (PDMS) surfaces. We employed a triblock copolymer with trade name F(108), poly(L-lysine)-g-poly(ethylene glycol) (PLL-PEG), as well as the hybrid coating n-dodecyl-β-D-maltoside and methyl cellulose (DDM/MC). The impact of these coatings was characterized by measuring the electroosmotic flow (EOF), contact angle, and prevention of protein adsorption. Furthermore, we investigated the influence of static coatings, i.e., the incubation with the coating agent prior to measurements, and dynamic coatings, where the coating agent was present during the measurement. We found that all coatings on PDMS as well as quartz reduced EOF, increased reproducibility of EOF, reduced protein adsorption, and improved the wettability of the surfaces. Among the coating strategies tested, the dynamic coatings with DDM/MC and F(108) demonstrated maximal reduction of EOF and protein adsorption and simultaneously best long-term stability concerning EOF. For PLL-PEG, a reversal in the EOF direction was observed. Interestingly, the static surface coating strategy with F(108) proved to be as effective to prevent protein adsorption as dynamic coating with this block copolymer. These findings will allow optimized parameter choices for coating strategies on PDMS and quartz microfluidic devices in which control of EOF and reduced biofouling are indispensable.

摘要

微流控装置的表面修饰对于成功的生物分析应用至关重要。在这里,我们研究了三种不同的石英和聚二甲基硅氧烷(PDMS)表面涂层。我们使用了一种商品名为 F(108)的三嵌段共聚物、聚 L-赖氨酸-接枝-聚乙二醇(PLL-PEG)以及混合涂层正十二烷基-β-D-麦芽糖苷和甲基纤维素(DDM/MC)。通过测量电动流(EOF)、接触角和防止蛋白质吸附来表征这些涂层的影响。此外,我们还研究了静态涂层(即在测量前用涂层剂孵育)和动态涂层(即在测量过程中存在涂层剂)的影响。我们发现所有 PDMS 和石英上的涂层都降低了 EOF,提高了 EOF 的重现性,减少了蛋白质吸附,改善了表面润湿性。在所测试的涂层策略中,DDM/MC 和 F(108 的动态涂层显示出最大的 EOF 和蛋白质吸附降低,同时具有最佳的 EOF 长期稳定性。对于 PLL-PEG,观察到 EOF 方向的反转。有趣的是,F(108)的静态表面涂层策略在防止蛋白质吸附方面与该嵌段共聚物的动态涂层一样有效。这些发现将为 PDMS 和石英微流控装置的涂层策略提供优化的参数选择,在这些装置中,EOF 的控制和减少生物污染是必不可少的。

相似文献

1
Physisorbed surface coatings for poly(dimethylsiloxane) and quartz microfluidic devices.
Anal Bioanal Chem. 2011 Oct;401(7):2113-22. doi: 10.1007/s00216-011-5301-z. Epub 2011 Aug 17.
2
Poly(oxyethylene) based surface coatings for poly(dimethylsiloxane) microchannels.
Langmuir. 2005 Aug 2;21(16):7551-7. doi: 10.1021/la0510432.
4
Nonfouling hydrophilic poly(ethylene glycol) engraftment strategy for PDMS/SU-8 heterogeneous microfluidic devices.
Langmuir. 2012 Nov 20;28(46):16227-36. doi: 10.1021/la303196m. Epub 2012 Nov 6.
5
Carbohydrate analysis on hybrid poly(dimethylsiloxane)/glass chips dynamically coated with ionic complementary peptide.
J Chromatogr A. 2017 Jan 20;1481:152-157. doi: 10.1016/j.chroma.2016.12.049. Epub 2016 Dec 19.
8
Surface modification with BSA blocking based on in situ synthesized gold nanoparticles in poly(dimethylsiloxane) microchip.
Colloids Surf B Biointerfaces. 2010 Feb 1;75(2):608-11. doi: 10.1016/j.colsurfb.2009.10.015. Epub 2009 Nov 5.
9
Dynamic coating of SU-8 microfluidic chips with phospholipid disks.
Electrophoresis. 2010 Aug;31(15):2566-74. doi: 10.1002/elps.201000130.
10
Easy-to-fabricate thin-film coating on PDMS substrate with super hydrophilicity and stability.
Electrophoresis. 2015 Mar;36(6):889-92. doi: 10.1002/elps.201400366. Epub 2015 Feb 19.

引用本文的文献

1
Microfluidic Single-Cell Study on Protoplast Fusion-New Insights on Timescales and Reversibilities.
Plants (Basel). 2024 Jan 18;13(2):295. doi: 10.3390/plants13020295.
2
Electrokinetic Active Particles for Motion-Based Biomolecule Detection.
Nano Lett. 2023 Mar 22;23(6):2379-2387. doi: 10.1021/acs.nanolett.3c00319. Epub 2023 Mar 7.
3
Concentration-Polarization Electroosmosis near Insulating Constrictions within Microfluidic Channels.
Anal Chem. 2021 Nov 9;93(44):14667-14674. doi: 10.1021/acs.analchem.1c02849. Epub 2021 Oct 27.
4
The influence of reduced graphene oxide on stem cells: a perspective in peripheral nerve regeneration.
Regen Biomater. 2021 Jun 25;8(4):rbab032. doi: 10.1093/rb/rbab032. eCollection 2021 Aug.
5
Dielectrophoretic analysis of the impact of isopropyl alcohol on the electric polarisability of Escherichia coli whole-cells.
Anal Bioanal Chem. 2020 Jun;412(16):3925-3933. doi: 10.1007/s00216-020-02451-9. Epub 2020 Mar 11.
6
Superior LSPR substrates based on electromagnetic decoupling for on-a-chip high-throughput label-free biosensing.
Light Sci Appl. 2017 Aug 25;6(8):e17042. doi: 10.1038/lsa.2017.42. eCollection 2017 Aug.
7
Insulator-based dielectrophoresis of mitochondria.
Biomicrofluidics. 2014 Mar 3;8(2):021801. doi: 10.1063/1.4866852. eCollection 2014 Mar.
8
A fluorescence based method for the quantification of surface functional groups in closed micro- and nanofluidic channels.
Biomicrofluidics. 2013 Apr 22;7(2):26503. doi: 10.1063/1.4802270. eCollection 2013.
10
Dielectrophoretic sorting of membrane protein nanocrystals.
ACS Nano. 2013 Oct 22;7(10):9129-37. doi: 10.1021/nn403760q. Epub 2013 Sep 9.

本文引用的文献

6
Latest developments in micro total analysis systems.
Anal Chem. 2010 Jun 15;82(12):4830-47. doi: 10.1021/ac100969k.
7
Latest developments in microfluidic cell biology and analysis systems.
Anal Chem. 2010 Jun 15;82(12):4848-64. doi: 10.1021/ac1009707.
9
Phospholipid Polymer Biointerfaces for Lab-on-a-Chip Devices.
Ann Biomed Eng. 2010 Jun;38(6):1938-53. doi: 10.1007/s10439-010-0025-3. Epub 2010 Apr 1.
10
Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices.
Microfluid Nanofluidics. 2009 Sep 1;7(3):291-306. doi: 10.1007/s10404-009-0443-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验