Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287, United States.
ACS Nano. 2013 Oct 22;7(10):9129-37. doi: 10.1021/nn403760q. Epub 2013 Sep 9.
Structure elucidation of large membrane protein complexes is still a considerable challenge, yet is a key factor in drug development and disease combat. Femtosecond nanocrystallography is an emerging technique with which structural information of membrane proteins is obtained without the need to grow large crystals, thus overcoming the experimental riddle faced in traditional crystallography methods. Here, we demonstrate for the first time a microfluidic device capable of sorting membrane protein crystals based on size using dielectrophoresis. We demonstrate the excellent sorting power of this new approach with numerical simulations of selected submicrometer beads in excellent agreement with experimental observations. Crystals from batch crystallization broths of the huge membrane protein complex photosystem I were sorted without further treatment, resulting in a high degree of monodispersity and crystallinity in the ~100 nm size range. Microfluidic integration, continuous sorting, and nanometer-sized crystal fractions make this method ideal for direct coupling to femtosecond nanocrystallography.
阐明大型膜蛋白复合物的结构仍然是一个相当大的挑战,但这是药物开发和疾病防治的关键因素。飞秒纳米晶体学是一种新兴技术,它可以在不需要生长大晶体的情况下获得膜蛋白的结构信息,从而克服了传统晶体学方法所面临的实验难题。在这里,我们首次展示了一种能够基于大小使用介电泳对膜蛋白晶体进行分选的微流控装置。我们通过对选定的亚微米珠的数值模拟,证明了这种新方法具有出色的分选能力,与实验观察结果非常吻合。从巨大的膜蛋白复合物光系统 I 的批量结晶培养物中分离出晶体,无需进一步处理,即可在~100nm 的尺寸范围内实现高度的单分散性和结晶度。微流控集成、连续分选和纳米级晶体分数使该方法非常适合与飞秒纳米晶体学直接耦合。