Pharmacokinetics, Dynamics and Metabolism, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut, USA.
AAPS J. 2011 Dec;13(4):565-75. doi: 10.1208/s12248-011-9296-3. Epub 2011 Aug 17.
Pharmacokinetic-pharmacodynamic (PK-PD) modeling greatly enables quantitative implementation of the "learn and confirm" paradigm across different stages of drug discovery and development. This work describes the successful prospective application of this concept in the discovery and early development of a novel κ-opioid receptor (KOR) antagonist, PF-04455242, where PK-PD understanding from preclinical biomarker responses enabled successful prediction of the clinical response in a proof of mechanism study. Preclinical data obtained in rats included time course measures of the KOR antagonist (PF-04455242), a KOR agonist (spiradoline), and a KOR-mediated biomarker response (prolactin secretion) in plasma. Clinical data included time course measures of PF-04455242 and prolactin in 24 healthy volunteers following a spiradoline challenge and single oral doses of PF-04455242 (18 and 30 mg). In both species, PF-04455242 successfully reversed spiradoline-induced prolactin response. A competitive antagonism model was developed and implemented within NONMEM to describe the effect of PF-04455242 on spiradoline-induced prolactin elevation in rats and humans. The PK-PD model-based estimate of K(i) for PF-04455242 in rats was 414 ng/mL. Accounting for species differences in unbound fraction, in vitro K(i) and brain penetration provided a predicted human K(i) of 44.4 ng/mL. This prediction was in good agreement with that estimated via the application of the proposed PK-PD model to the clinical data (i.e., 39.2 ng/mL). These results illustrate the utility of the proposed PK-PD model in supporting the quantitative translation of preclinical studies into an accurate clinical expectation. As such, the proposed PK-PD model is useful for supporting the design, selection, and early development of novel KOR antagonists.
药代动力学-药效动力学(PK-PD)模型极大地促进了“学习和确认”范式在药物发现和开发的不同阶段的定量实施。这项工作描述了在一种新型 κ 阿片受体(KOR)拮抗剂 PF-04455242 的发现和早期开发中成功应用这一概念的情况,其中从临床前生物标志物反应中获得的 PK-PD 认识使人们能够成功预测机制研究中的临床反应。在大鼠中获得的临床前数据包括 KOR 拮抗剂(PF-04455242)、KOR 激动剂(螺旋多醇)和 KOR 介导的生物标志物反应(催乳素分泌)的时间过程测量。临床数据包括 24 名健康志愿者在螺旋多醇挑战和单次口服 PF-04455242(18 和 30mg)后 PF-04455242 和催乳素的时间过程测量。在这两种物种中,PF-04455242 成功地逆转了螺旋多醇诱导的催乳素反应。建立并在 NONMEM 中实施了一个竞争性拮抗模型,以描述 PF-04455242 对大鼠和人类螺旋多醇诱导的催乳素升高的影响。基于 PK-PD 模型的 PF-04455242 在大鼠中的 K(i)估计值为 414ng/mL。考虑到未结合部分、体外 K(i)和脑穿透率的种间差异,提供了一个预测的人类 K(i)值为 44.4ng/mL。这一预测与通过将拟议的 PK-PD 模型应用于临床数据来估计的结果(即 39.2ng/mL)非常吻合。这些结果表明,所提出的 PK-PD 模型在支持将临床前研究定量转化为准确的临床预期方面具有实用性。因此,所提出的 PK-PD 模型对于支持新型 KOR 拮抗剂的设计、选择和早期开发非常有用。