Suppr超能文献

蒺藜苜蓿 mtpt4 突变体揭示了氮在丛枝菌根共生中泡囊退化调节中的作用。

Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis.

机构信息

Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.

出版信息

Plant J. 2011 Dec;68(6):954-65. doi: 10.1111/j.1365-313X.2011.04746.x. Epub 2011 Oct 17.

Abstract

Plants acquire essential mineral nutrients such as phosphorus (P) and nitrogen (N) directly from the soil, but the majority of the vascular plants also gain access to these mineral nutrients through endosymbiotic associations with arbuscular mycorrhizal (AM) fungi. In AM symbiosis, the fungi deliver P and N to the root through branched hyphae called arbuscules. Previously we identified MtPT4, a Medicago truncatula phosphate transporter located in the periarbuscular membrane that is essential for symbiotic phosphate transport and for maintenance of the symbiosis. In mtpt4 mutants arbuscule degeneration occurs prematurely and symbiosis fails. Here, we show that premature arbuscule degeneration occurs in mtpt4 mutants even when the fungus has access to carbon from a nurse plant. Thus, carbon limitation is unlikely to be the primary cause of fungal death. Surprisingly, premature arbuscule degeneration is suppressed if mtpt4 mutants are deprived of nitrogen. In mtpt4 mutants with a low N status, arbuscule lifespan does not differ from that of the wild type, colonization of the mtpt4 root system occurs as in the wild type and the fungus completes its life cycle. Sulphur is another essential macronutrient delivered to the plant by the AM fungus; however, suppression of premature arbuscule degeneration does not occur in sulphur-deprived mtpt4 plants. The mtpt4 arbuscule phenotype is strongly correlated with shoot N levels. Analyses of an mtpt4-2 sunn-1 double mutant indicates that SUNN, required for N-mediated autoregulation of nodulation, is not involved. Together, the data reveal an unexpected role for N in the regulation of arbuscule lifespan in AM symbiosis.

摘要

植物直接从土壤中获取磷(P)和氮(N)等必需的矿物质营养,但大多数维管植物也通过与丛枝菌根(AM)真菌的共生关系获得这些矿物质营养。在 AM 共生中,真菌通过称为丛枝的分支菌丝将 P 和 N 输送到根部。此前,我们鉴定了拟南芥磷酸盐转运蛋白 MtPT4,它位于丛枝周围的质膜上,对于共生磷酸盐转运和共生的维持是必需的。在 mtpt4 突变体中,丛枝会过早退化,共生失败。在这里,我们表明,即使真菌可以从护理植物中获得碳,mtpt4 突变体也会发生过早的丛枝退化。因此,碳限制不太可能是真菌死亡的主要原因。令人惊讶的是,如果 mtpt4 突变体缺乏氮,就会抑制过早的丛枝退化。在氮含量低的 mtpt4 突变体中,丛枝的寿命与野生型没有差异,真菌会像在野生型中那样定植 mtpt4 根系,并且完成其生命周期。硫是另一种由 AM 真菌输送给植物的必需大量营养素;然而,在缺硫的 mtpt4 植物中,不会抑制过早的丛枝退化。mtpt4 的丛枝表型与地上部氮水平密切相关。对 mtpt4-2 sunn-1 双突变体的分析表明,SUNN 不参与氮介导的结瘤自动调节所需的物质。这些数据共同揭示了氮在 AM 共生中调节丛枝寿命的意外作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验