Suppr超能文献

分析 K 和 B 衍生大肠杆菌中的异源紫杉二烯生产。

Analysis of heterologous taxadiene production in K- and B-derived Escherichia coli.

机构信息

Department of Chemical and Biological Engineering; Science and Technology Center, Tufts University, Medford, MA 02155, USA.

出版信息

Appl Microbiol Biotechnol. 2012 Feb;93(4):1651-61. doi: 10.1007/s00253-011-3528-4. Epub 2011 Aug 18.

Abstract

Taxa-4(5),11(12)-diene is the first dedicated intermediate in the metabolic pathway responsible for synthesizing the anticancer compound Taxol. In this study, the heterologous production of taxadiene was established in and analyzed between K- and B-derived Escherichia coli strains. First, recombinant parameters associated with precursor metabolism (the upstream methylerythritol phosphate (MEP) pathway) and taxadiene biosynthesis (the downstream pathway) were varied to probe the effect different promoters and cellular backgrounds have on taxadiene production. Specifically, upstream MEP pathway genes responsible for the taxadiene precursors, dimethylallyl diphosphate and isopentenyl diphosphate, were tested with an inducible T7 promoter system within K and B E. coli strains. Whereas, inducible T7, Trc, and T5 promoters were tested with the plasmid-borne geranylgeranyl diphosphate synthase and taxadiene synthase genes responsible for the downstream pathway. The K-derivative produced taxadiene roughly 2.5-fold higher than the B-derivative. A transcriptomics study revealed significant differences in pyruvate metabolism between the K and B strains, providing insight into the differences observed in taxadiene biosynthesis and targets for future metabolic engineering efforts. Next, the effect of temperature on cell growth and taxadiene production was analyzed in these two strains, revealing similar phenotypes between the two with 22°C as the optimal production temperature. Lastly, the effect of indole on cell growth was investigated between the two strains, showing that the K-derivative demonstrated greater growth inhibition compared to the B-derivative.

摘要

Taxa-4(5),11(12)-二烯是负责合成抗癌化合物紫杉醇的代谢途径中的第一个专用中间产物。在这项研究中,在 K 和 B 衍生的大肠杆菌菌株中建立了 taxadiene 的异源生产并进行了分析。首先,改变了与前体代谢(上游甲基赤藓醇磷酸 (MEP) 途径)和 taxadiene 生物合成(下游途径)相关的重组参数,以探究不同启动子和细胞背景对 taxadiene 生产的影响。具体来说,使用 K 和 B 大肠杆菌菌株中的诱导型 T7 启动子系统测试了负责 taxadiene 前体二甲基烯丙基二磷酸和异戊烯二磷酸的上游 MEP 途径基因。而,使用带有质粒的香叶基香叶基二磷酸合酶和负责下游途径的 taxadiene 合酶基因测试了诱导型 T7、Trc 和 T5 启动子。K 衍生物产生的 taxadiene 比 B 衍生物高约 2.5 倍。转录组学研究揭示了 K 和 B 菌株之间丙酮酸代谢的显着差异,为观察到的 taxadiene 生物合成差异和未来代谢工程努力的目标提供了深入了解。接下来,分析了这两种菌株中温度对细胞生长和 taxadiene 生产的影响,发现两种菌株的表型相似,22°C 是最佳生产温度。最后,研究了两种菌株之间吲哚对细胞生长的影响,结果表明 K 衍生物比 B 衍生物表现出更大的生长抑制。

相似文献

1
Analysis of heterologous taxadiene production in K- and B-derived Escherichia coli.
Appl Microbiol Biotechnol. 2012 Feb;93(4):1651-61. doi: 10.1007/s00253-011-3528-4. Epub 2011 Aug 18.
2
Computational identification of gene over-expression targets for metabolic engineering of taxadiene production.
Appl Microbiol Biotechnol. 2012 Mar;93(5):2063-73. doi: 10.1007/s00253-011-3725-1. Epub 2011 Nov 30.
3
Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol.
Bioorg Med Chem. 2001 Sep;9(9):2237-42. doi: 10.1016/s0968-0896(01)00072-4.
4
Natural and engineered production of taxadiene with taxadiene synthase.
Biotechnol Bioeng. 2015 Feb;112(2):229-35. doi: 10.1002/bit.25468. Epub 2014 Oct 21.
6
Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli.
Science. 2010 Oct 1;330(6000):70-4. doi: 10.1126/science.1191652.
9
Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production.
Metab Eng. 2008 May-Jul;10(3-4):201-6. doi: 10.1016/j.ymben.2008.03.001. Epub 2008 Mar 26.
10
Enhanced production of taxadiene in Saccharomyces cerevisiae.
Microb Cell Fact. 2020 Nov 2;19(1):200. doi: 10.1186/s12934-020-01458-2.

引用本文的文献

1
Exploring optimal Taxol® CYP725A4 activity in Saccharomyces cerevisiae.
Microb Cell Fact. 2022 Sep 19;21(1):197. doi: 10.1186/s12934-022-01922-1.
2
Synthesis of Ferulenol by Engineered : Structural Elucidation by Using the In Silico Tools.
Molecules. 2021 Oct 16;26(20):6264. doi: 10.3390/molecules26206264.
3
Enhanced production of taxadiene in Saccharomyces cerevisiae.
Microb Cell Fact. 2020 Nov 2;19(1):200. doi: 10.1186/s12934-020-01458-2.
4
One-Step Purification of Microbially Produced Hydrophobic Terpenes via Process Chromatography.
Front Bioeng Biotechnol. 2019 Jul 29;7:185. doi: 10.3389/fbioe.2019.00185. eCollection 2019.
6
Local bacteria affect the efficacy of chemotherapeutic drugs.
Sci Rep. 2015 Sep 29;5:14554. doi: 10.1038/srep14554.
7
Engineered biosynthesis of natural products in heterologous hosts.
Chem Soc Rev. 2015 Aug 7;44(15):5265-90. doi: 10.1039/c5cs00025d. Epub 2015 May 11.
8
Metabolic engineering of Nicotiana benthamiana for the increased production of taxadiene.
Plant Cell Rep. 2014 Jun;33(6):895-904. doi: 10.1007/s00299-014-1568-9. Epub 2014 Jan 25.
9
Balance of XYL1 and XYL2 expression in different yeast chassis for improved xylose fermentation.
Front Microbiol. 2012 Oct 5;3:355. doi: 10.3389/fmicb.2012.00355. eCollection 2012.
10
Inhibitory cross-talk upon introduction of a new metabolic pathway into an existing metabolic network.
Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):E2856-64. doi: 10.1073/pnas.1208509109. Epub 2012 Sep 14.

本文引用的文献

1
Multi-factorial engineering of heterologous polyketide production in Escherichia coli reveals complex pathway interactions.
Biotechnol Bioeng. 2011 Jun;108(6):1360-71. doi: 10.1002/bit.23069. Epub 2011 Feb 24.
2
Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli.
Science. 2010 Oct 1;330(6000):70-4. doi: 10.1126/science.1191652.
3
Bacterial charity work leads to population-wide resistance.
Nature. 2010 Sep 2;467(7311):82-5. doi: 10.1038/nature09354.
4
Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control.
Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13654-9. doi: 10.1073/pnas.1006138107. Epub 2010 Jul 19.
5
Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae.
Phytochemistry. 2010 Sep;71(13):1466-73. doi: 10.1016/j.phytochem.2010.06.001. Epub 2010 Jun 30.
6
Construction and performance of heterologous polyketide-producing K-12- and B-derived Escherichia coli.
Lett Appl Microbiol. 2010 Aug;51(2):196-204. doi: 10.1111/j.1472-765X.2010.02880.x. Epub 2010 Jun 1.
7
Metabolic engineering of Escherichia coli for enhanced production of (R)- and (S)-3-hydroxybutyrate.
Appl Environ Microbiol. 2009 May;75(10):3137-45. doi: 10.1128/AEM.02667-08. Epub 2009 Mar 20.
8
High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli.
PLoS One. 2009;4(2):e4489. doi: 10.1371/journal.pone.0004489. Epub 2009 Feb 16.
9
Reconstruction of biochemical networks in microorganisms.
Nat Rev Microbiol. 2009 Feb;7(2):129-43. doi: 10.1038/nrmicro1949. Epub 2008 Dec 31.
10
Genome-scale models of bacterial metabolism: reconstruction and applications.
FEMS Microbiol Rev. 2009 Jan;33(1):164-90. doi: 10.1111/j.1574-6976.2008.00146.x. Epub 2008 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验