Suppr超能文献

新型喹啉-3-甲腈衍生物作为 Tpl2 激酶抑制剂的药效团生成和基于原子的 3D-QSAR 研究。

Pharmacophore generation and atom-based 3D-QSAR of novel quinoline-3-carbonitrile derivatives as Tpl2 kinase inhibitors.

机构信息

School of Biotechnology, National Institute of Technology Calicut, Calicut, India.

出版信息

J Enzyme Inhib Med Chem. 2012 Aug;27(4):558-70. doi: 10.3109/14756366.2011.603128. Epub 2011 Aug 18.

Abstract

Tumour progression locus-2 (Tpl2) is a serine/threonine kinase, which regulates the expression of tumour necrosis factor α. The article describes the development of a robust pharmacophore model and the investigation of structure-activity relationship analysis of quinoline-3-carbonitrile derivatives reported for Tpl2 kinase inhibition. A five point pharmacophore model (ADRRR) was developed and used to derive a predictive atom-based 3-dimensional quantitative structure activity relationship (3D-QSAR) model. The obtained 3D-QSAR model has an excellent correlation coefficient value (r(2)= 0.96), Fisher ratio (F = 131.9) and exhibited good predictive power (q(2) = 0.79). The QSAR model suggests that the inclusion of hydrophobic substituents will enhance the Tpl2 kinase inhibition. In addition, H-bond donating groups, negative ionic groups and electron withdrawing groups positively contribute to the Tpl2 kinase inhibition. Further, pharmacophoric model was validated by the receiver operating characteristic curve analysis and was employed for virtual screening to identify six potential Tpl2 kinase inhibitors. The findings of this study provide a set of guidelines for designing compounds with better Tpl2 kinase inhibitory potency.

摘要

肿瘤进展基因座-2(Tpl2)是一种丝氨酸/苏氨酸激酶,可调节肿瘤坏死因子α的表达。本文描述了一种稳健的药效团模型的开发,并对报告的 Tpl2 激酶抑制的喹啉-3-甲腈衍生物的结构-活性关系分析进行了研究。开发了一个 5 点药效团模型(ADRRR),并用于推导出基于原子的预测性 3 维定量构效关系(3D-QSAR)模型。所获得的 3D-QSAR 模型具有出色的相关系数值(r(2)=0.96)、Fisher 比(F=131.9),并表现出良好的预测能力(q(2)=0.79)。QSAR 模型表明,包含疏水性取代基将增强 Tpl2 激酶抑制作用。此外,氢键供体基团、阴离子基团和吸电子基团对 Tpl2 激酶抑制作用有积极贡献。此外,通过接受者操作特征曲线分析对药效团模型进行了验证,并将其用于虚拟筛选以鉴定六种潜在的 Tpl2 激酶抑制剂。这项研究的结果为设计具有更好 Tpl2 激酶抑制活性的化合物提供了一套指导原则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验