Suppr超能文献

3D QSAR 分析氨基苯甲酰胺衍生物作为组蛋白去乙酰化酶抑制剂。

3D QSAR of aminophenyl benzamide derivatives as histone deacetylase inhibitors.

机构信息

School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal, India.

出版信息

Med Chem. 2010 Sep;6(5):277-85. doi: 10.2174/157340610793358846.

Abstract

The article describes the development of a robust pharmacophore model and the investigation of structure activity relationship analysis of 48 aminophenyl benzamide derivatives reported for Histone Deacetylase (HDAC) inhibition using PHASE module of Schrodinger software. A five point pharmacophore model consisting of two aromatic rings (R), two hydrogen bond donors (D) and one hydrogen bond acceptor (A) with discrete geometries as pharmacophoric features was developed and the generated pharmacophore model was used to derive a predictive atom-based 3D QSAR model for the studied dataset. The obtained 3D QSAR model has an excellent correlation coefficient value (r(2)=0.99) along with good statistical significance as shown by high Fisher ratio (F=631.80). The model also exhibits good predictive power confirmed by the high value of cross validated correlation coefficient (q(2) = 0.85). The QSAR model suggests that hydrophobic character is crucial for the HDAC inhibitory activity exhibited by these compounds and inclusion of hydrophobic substituents will enhance the HDAC inhibition. In addition to the hydrophobic character, hydrogen bond donating groups positively contributes to the HDAC inhibition whereas electron withdrawing groups has a negative influence in HDAC inhibitory potency. The findings of the QSAR study provide a set of guidelines for designing compounds with better HDAC inhibitory potency.

摘要

本文描述了使用 Schrodinger 软件的 PHASE 模块为组蛋白去乙酰化酶(HDAC)抑制开发了一种强大的药效团模型,并对 48 种报道的氨基苯基苯甲酰胺衍生物的结构活性关系进行了分析。开发了一个由两个芳环(R)、两个氢键供体(D)和一个氢键受体(A)组成的五点点药效团模型,具有离散的几何形状作为药效团特征,并使用该生成的药效团模型为研究数据集推导出了一个基于预测原子的 3D-QSAR 模型。获得的 3D-QSAR 模型具有出色的相关系数值(r²=0.99),并且具有良好的统计显著性,如表现在高 Fisher 比(F=631.80)。该模型还通过高交叉验证相关系数(q²=0.85)的值证实了良好的预测能力。QSAR 模型表明,这些化合物的 HDAC 抑制活性的关键是疏水性,包含疏水性取代基将增强 HDAC 抑制。除了疏水性外,氢键供体基团对 HDAC 抑制有积极贡献,而吸电子基团对 HDAC 抑制活性有负面影响。QSAR 研究的结果为设计具有更好 HDAC 抑制活性的化合物提供了一组指导原则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验