Suppr超能文献

慢性肾脏病中肾素-血管紧张素-醛固酮系统与维生素 D-FGF-23-klotho 的相互作用。

Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease.

机构信息

Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen and University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands.

出版信息

J Am Soc Nephrol. 2011 Sep;22(9):1603-9. doi: 10.1681/ASN.2010121251. Epub 2011 Aug 18.

Abstract

There is increasingly evidence that the interactions between vitamin D, fibroblast growth factor 23 (FGF-23), and klotho form an endocrine axis for calcium and phosphate metabolism, and derangement of this axis contributes to the progression of renal disease. Several recent studies also demonstrate negative regulation of the renin gene by vitamin D. In chronic kidney disease (CKD), low levels of calcitriol, due to the loss of 1-alpha hydroxylase, increase renal renin production. Activation of the renin-angiotensin-aldosterone system (RAAS), in turn, reduces renal expression of klotho, a crucial factor for proper FGF-23 signaling. The resulting high FGF-23 levels suppress 1-alpha hydroxylase, further lowering calcitriol. This feedback loop results in vitamin D deficiency, RAAS activation, high FGF-23 levels, and renal klotho deficiency, all of which associate with progression of renal damage. Here we examine current evidence for an interaction between the RAAS and the vitamin D-FGF-23-klotho axis as well as its possible implications for progression of CKD.

摘要

越来越多的证据表明,维生素 D、成纤维细胞生长因子 23(FGF-23)和 klotho 之间的相互作用形成了钙和磷代谢的内分泌轴,该轴的紊乱导致肾脏疾病的进展。最近的几项研究还表明维生素 D 对肾素基因有负向调节作用。在慢性肾脏病(CKD)中,由于 1-α羟化酶的丧失,导致活性维生素 D 水平降低,从而增加肾脏肾素的产生。肾素-血管紧张素-醛固酮系统(RAAS)的激活反过来又降低了 klotho 的肾脏表达,klotho 是 FGF-23 信号传导的关键因素。由此产生的高 FGF-23 水平抑制 1-α羟化酶,进一步降低活性维生素 D。这种反馈循环导致维生素 D 缺乏、RAAS 激活、高 FGF-23 水平和肾脏 klotho 缺乏,所有这些都与肾脏损害的进展有关。在这里,我们检查了 RAAS 和维生素 D-FGF-23-klotho 轴之间相互作用的现有证据及其对 CKD 进展的可能影响。

相似文献

1
Cross talk between the renin-angiotensin-aldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease.
J Am Soc Nephrol. 2011 Sep;22(9):1603-9. doi: 10.1681/ASN.2010121251. Epub 2011 Aug 18.
2
Phosphate and FGF23 in the renoprotective benefit of RAAS inhibition.
Pharmacol Res. 2016 Apr;106:87-91. doi: 10.1016/j.phrs.2016.02.015. Epub 2016 Feb 18.
3
[Pathologies of calcium-phosphate homeostasis].
Postepy Biochem. 2012;58(4):474-7.
4
Klotho and chronic kidney disease.
Contrib Nephrol. 2013;180:47-63. doi: 10.1159/000346778. Epub 2013 May 3.
5
Fibroblast growth factor 23-Klotho and hypertension: experimental and clinical mechanisms.
Pediatr Nephrol. 2021 Oct;36(10):3007-3022. doi: 10.1007/s00467-020-04843-6. Epub 2020 Nov 23.
7
Klotho, Aging, and the Failing Kidney.
Front Endocrinol (Lausanne). 2020 Aug 27;11:560. doi: 10.3389/fendo.2020.00560. eCollection 2020.
8
Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23.
Circulation. 2012 May 8;125(18):2243-55. doi: 10.1161/CIRCULATIONAHA.111.053405. Epub 2012 Apr 5.
9
FGF23 beyond Phosphotropic Hormone.
Trends Endocrinol Metab. 2018 Nov;29(11):755-767. doi: 10.1016/j.tem.2018.08.006. Epub 2018 Sep 11.

引用本文的文献

1
Long-Term Alterations of Renal Microvasculature in Rats Following Maternal PM Exposure: Vitamin D Effects.
Biomedicines. 2025 May 10;13(5):1166. doi: 10.3390/biomedicines13051166.
2
Endothelial dysfunction in the kidney transplant population: Current evidence and management strategies.
World J Transplant. 2025 Mar 18;15(1):97458. doi: 10.5500/wjt.v15.i1.97458.
4
Controlled dietary phosphate loading in healthy young men elevates plasma phosphate and FGF23 levels.
Pflugers Arch. 2025 Mar;477(3):495-508. doi: 10.1007/s00424-024-03046-4. Epub 2024 Nov 27.
6
Impairment of Cardiovascular Functional Capacity in Mild-to-Moderate Kidney Dysfunction.
Clin J Am Soc Nephrol. 2024 Dec 1;19(12):1547-1561. doi: 10.2215/CJN.0000000000000548. Epub 2024 Oct 14.
7
The role of age and sex in non-linear dilution adjustment of spot urine arsenic.
BMC Nephrol. 2024 Oct 13;25(1):348. doi: 10.1186/s12882-024-03758-w.
8
The role of Klotho and sirtuins in sleep-related cardiovascular diseases: a review study.
NPJ Aging. 2024 Oct 2;10(1):43. doi: 10.1038/s41514-024-00165-1.

本文引用的文献

2
Klotho deficiency causes vascular calcification in chronic kidney disease.
J Am Soc Nephrol. 2011 Jan;22(1):124-36. doi: 10.1681/ASN.2009121311. Epub 2010 Nov 29.
4
Effects of dietary phosphate and calcium intake on fibroblast growth factor-23.
Clin J Am Soc Nephrol. 2011 Feb;6(2):383-9. doi: 10.2215/CJN.04730510. Epub 2010 Oct 28.
5
Klotho is associated with VEGF receptor-2 and the transient receptor potential canonical-1 Ca2+ channel to maintain endothelial integrity.
Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19308-13. doi: 10.1073/pnas.1008544107. Epub 2010 Oct 21.
6
Aging-related kidney damage is associated with a decrease in klotho expression and an increase in superoxide production.
Age (Dordr). 2011 Sep;33(3):261-74. doi: 10.1007/s11357-010-9176-2. Epub 2010 Sep 10.
9
Hyperaldosteronism in Klotho-deficient mice.
Am J Physiol Renal Physiol. 2010 Nov;299(5):F1171-7. doi: 10.1152/ajprenal.00233.2010. Epub 2010 Aug 18.
10
Therapeutic effects of vitamin D analogs on cardiac hypertrophy in spontaneously hypertensive rats.
Am J Pathol. 2010 Aug;177(2):622-31. doi: 10.2353/ajpath.2010.091292. Epub 2010 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验