Suppr超能文献

贝叶斯网络与地理信息系统的整合:良好实践范例。

Integrating Bayesian networks and geographic information systems: good practice examples.

机构信息

Discipline of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.

出版信息

Integr Environ Assess Manag. 2012 Jul;8(3):473-9. doi: 10.1002/ieam.262. Epub 2011 Sep 19.

Abstract

Bayesian networks (BNs) are becoming increasingly common in problems with spatial aspects. The degree of spatial involvement may range from spatial mapping of BN outputs based on nodes in the BN that explicitly involve geographic features, to integration of different networks based on geographic information. In these situations, it is useful to consider how geographic information systems (GISs) could be used to enhance the conceptualization, quantification, and prediction of BNs. Here, we discuss some techniques that may be used to integrate GIS and BN models, with reference to some recent literature which illustrate these approaches. We then reflect on 2 case studies based on our own experience. The first involves the integration of GIS and a BN to assess the scientific factors associated with initiation of Lyngbya majuscula, a cyanobacterium that occurs in coastal waterways around the world. The 2nd case study involves the use of GISs as an aid for eliciting spatially informed expert opinion and expressing this information as prior distributions for a Bayesian model and as input into a BN. Elicitator, the prototype software package we developed for achieving this, is also briefly described. Whereas the 1st case study demonstrates a GIS-data driven specification of conditional probability tables for BNs with complete geographical coverage for all the data layers involved, the 2nd illustrates a situation in which we do not have complete coverage and we are forced to extrapolate based on expert judgement.

摘要

贝叶斯网络(BNs)在具有空间方面的问题中越来越常见。空间参与的程度可能从基于明确涉及地理特征的 BN 节点的 BN 输出的空间映射,到基于地理信息的不同网络的集成。在这些情况下,考虑如何使用地理信息系统(GIS)来增强 BN 的概念化、量化和预测是很有用的。在这里,我们讨论了一些可能用于集成 GIS 和 BN 模型的技术,并参考了一些说明这些方法的最新文献。然后,我们根据自己的经验反思了两个案例研究。第一个涉及将 GIS 和 BN 集成以评估与 Lyngbya majuscula(一种在世界沿海航道中发现的蓝藻)起始相关的科学因素。第二个案例研究涉及使用 GIS 作为辅助工具来获取具有空间信息的专家意见,并将其表示为贝叶斯模型的先验分布,并作为输入到 BN 中。我们为实现这一目标开发的原型软件包 Elicitator 也进行了简要描述。第一个案例研究演示了具有完整地理覆盖的所有数据层的 BN 的 GIS 数据驱动的条件概率表规范,第二个案例研究说明了我们没有完整覆盖并且我们必须基于专家判断进行推断的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验