State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, People's Republic of China.
J Am Chem Soc. 2011 Sep 28;133(38):15191-9. doi: 10.1021/ja206425j. Epub 2011 Sep 6.
Selective transformations of carbon dioxide and epoxides into biodegradable polycarbonates by the alternating copolymerization of the two monomers represent some of the most well-studied and innovative technologies for potential large-scale utilization of carbon dioxide in chemical synthesis. For the most part, previous studies of these processes have focused on the use of aliphatic terminal epoxides or cyclohexene oxide derivatives, with only rare reports concerning the synthesis of CO(2) copolymers from epoxides containing electron-withdrawing groups such as styrene oxide. Herein we report the production of the CO(2) copolymer with more than 99% carbonate linkages from the coupling of CO(2) with epichlorohydrin, employing binary and bifunctional (salen)cobalt(III)-based catalyst systems. Comparative kinetic studies were performed via in situ infrared measurements as a function of temperature to assess the activation barriers for the production of cyclic carbonate versus copolymer involving two electronically different epoxides: epichlorohydrin and propylene oxide. The relative small activation energy difference between copolymer versus cyclic carbonate formation for the epichlorohydrin/CO(2) process (45.4 kJ/mol) accounts in part for the selective synthesis of copolymer to be more difficult in comparison with the propylene oxide/CO(2) case (53.5 kJ/mol). Direct observation of the propagating polymer-chain species from the binary (salen)CoX/MTBD (X = 2,4-dinitrophenoxide and MTBD = 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene) catalyst system by means of electrospray ionization mass spectrometry confirmed the perfectly alternating nature of the copolymerization process. This observation in combination with control experiments suggests possible intermediates involving MTBD in the CO(2)/epichlorohydrin copolymerization process.
通过两种单体的交替共聚将二氧化碳和环氧化物选择性转化为可生物降解的聚碳酸酯,这代表了一些最受关注和最具创新性的技术,有望将二氧化碳大规模应用于化学合成。在很大程度上,以前对这些过程的研究主要集中在使用脂肪族末端环氧化物或环己烯氧化物衍生物上,只有极少数报道涉及从含有吸电子基团(如氧化苯乙烯)的环氧化物合成 CO(2)共聚物。本文报道了通过 CO(2)与表氯醇的偶联,采用二元和双功能(salen)钴(III)基催化剂体系,从 CO(2)与表氯醇的偶联生产超过 99%碳酸酯键的 CO(2)共聚物。通过原位红外测量进行了比较动力学研究,以评估涉及两种电子不同的环氧化物(表氯醇和环氧丙烷)的环状碳酸酯与共聚物生成的活化能垒。对于表氯醇/CO(2)过程,共聚物与环状碳酸酯形成之间的相对较小的活化能差(45.4 kJ/mol)部分解释了与环氧丙烷/CO(2)情况相比,共聚物选择性合成更困难的原因(53.5 kJ/mol)。通过电喷雾电离质谱直接观察二元(salen)CoX/MTBD(X = 2,4-二硝基苯酚氧化物和 MTBD = 7-甲基-1,5,7-三氮杂双环[4.4.0]癸-5-烯)催化剂体系中聚合物链物种的增长,证实了共聚过程的完全交替性质。这一观察结果与对照实验相结合,表明在 CO(2)/表氯醇共聚过程中可能涉及 MTBD 的中间产物。