Deacy Arron C, Moreby Emma, Phanopoulos Andreas, Williams Charlotte K
Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, U.K.
J Am Chem Soc. 2020 Nov 11;142(45):19150-19160. doi: 10.1021/jacs.0c07980. Epub 2020 Oct 27.
The ring-opening copolymerization of carbon dioxide and propene oxide is a useful means to valorize waste into commercially attractive poly(propylene carbonate) (PPC) polyols. The reaction is limited by low catalytic activities, poor tolerance to a large excess of chain transfer agent, and tendency to form byproducts. Here, a series of new catalysts are reported that comprise heterodinuclear Co(III)/M(I) macrocyclic complexes (where M(I) = Group 1 metal). These catalysts show highly efficient production of PPC polyols, outstanding yields (turnover numbers), quantitative carbon dioxide uptake (>99%), and high selectivity for polyol formation (>95%). The most active, a Co(III)/K(I) complex, shows a turnover frequency of 800 h at low catalyst loading (0.025 mol %, 70 °C, 30 bar CO). The copolymerizations are well controlled and produce hydroxyl telechelic PPC with predictable molar masses and narrow dispersity ( < 1.15). The polymerization kinetics show a second order rate law, first order in both propylene oxide and catalyst concentrations, and zeroth order in CO pressure. An Eyring analysis, examining the effect of temperature on the propagation rate coefficient (), reveals the transition state barrier for polycarbonate formation: Δ = +92.6 ± 2.5 kJ mol. The Co(III)/K(I) catalyst is also highly active and selective in copolymerizations of other epoxides with carbon dioxide.
二氧化碳与环氧丙烷的开环共聚是一种将废弃物转化为具有商业吸引力的聚(碳酸亚丙酯)(PPC)多元醇的有效方法。该反应受到催化活性低、对大量链转移剂耐受性差以及易于形成副产物的限制。在此,报道了一系列新型催化剂,其包含异双核Co(III)/M(I)大环配合物(其中M(I) = 第1族金属)。这些催化剂在生产PPC多元醇方面表现出高效性、出色的产率(转化数)、定量的二氧化碳吸收(>99%)以及对多元醇形成的高选择性(>95%)。活性最高的Co(III)/K(I)配合物在低催化剂负载量(0.025 mol%,70 °C,30 bar CO)下显示出800 h⁻¹的周转频率。共聚反应得到良好控制,生成具有可预测摩尔质量和窄分散度(<1.15)的羟基封端PPC。聚合动力学显示为二级速率定律,环氧丙烷和催化剂浓度均为一级,而CO压力为零级。通过艾林分析研究温度对增长速率系数(kp)的影响,揭示了聚碳酸酯形成的过渡态能垒:Δ‡G = +92.6 ± 2.5 kJ mol⁻¹。Co(III)/K(I)催化剂在其他环氧化物与二氧化碳的共聚反应中也具有高活性和选择性。