Suppr超能文献

细胞骨架对 CD36 扩散的控制促进了其受体和信号功能。

Cytoskeletal control of CD36 diffusion promotes its receptor and signaling function.

机构信息

Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Cell. 2011 Aug 19;146(4):593-606. doi: 10.1016/j.cell.2011.06.049.

Abstract

The mechanisms that govern receptor coalescence into functional clusters--often a critical step in their stimulation by ligand--are poorly understood. We used single-molecule tracking to investigate the dynamics of CD36, a clustering-responsive receptor that mediates oxidized LDL uptake by macrophages. We found that CD36 motion in the membrane was spatially structured by the cortical cytoskeleton. A subpopulation of receptors diffused within linear confinement regions whose unique geometry simultaneously facilitated freedom of movement along one axis while increasing the effective receptor density. Co-confinement within troughs enhanced the probability of collisions between unligated receptors and promoted their clustering. Cytoskeleton perturbations that inhibited diffusion in linear confinement regions reduced receptor clustering in the absence of ligand and, following ligand addition, suppressed CD36-mediated signaling and internalization. These observations demonstrate a role for the cytoskeleton in controlling signal transduction by structuring receptor diffusion within membrane regions that increase their collision frequency.

摘要

调控受体聚合并形成功能性簇的机制——通常是配体刺激受体的关键步骤——尚未被完全理解。我们使用单分子追踪技术研究了 CD36 的动力学,CD36 是一种聚类反应性受体,可介导巨噬细胞摄取氧化型 LDL。我们发现,CD36 在膜中的运动受到皮质细胞骨架的空间结构限制。一部分受体在具有独特几何形状的线性限制区域内扩散,这种几何形状既允许沿一个轴自由移动,又增加了有效受体密度。在波谷中的共限制增加了未配体结合的受体之间发生碰撞的概率,并促进了它们的聚类。抑制线性限制区域扩散的细胞骨架扰动减少了无配体存在时的受体聚类,并且在添加配体后,抑制了 CD36 介导的信号转导和内化。这些观察结果表明,细胞骨架通过在增加其碰撞频率的膜区域中构建受体扩散,在控制信号转导中发挥作用。

相似文献

1
Cytoskeletal control of CD36 diffusion promotes its receptor and signaling function.
Cell. 2011 Aug 19;146(4):593-606. doi: 10.1016/j.cell.2011.06.049.
2
Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts.
PLoS One. 2013 Oct 9;8(10):e76893. doi: 10.1371/journal.pone.0076893. eCollection 2013.
4
Distinct mechanisms for OxLDL uptake and cellular trafficking by class B scavenger receptors CD36 and SR-BI.
J Lipid Res. 2007 Dec;48(12):2560-70. doi: 10.1194/jlr.M700163-JLR200. Epub 2007 Sep 17.
6
Uptake of oxidized low density lipoprotein by CD36 occurs by an actin-dependent pathway distinct from macropinocytosis.
J Biol Chem. 2009 Oct 30;284(44):30288-97. doi: 10.1074/jbc.M109.045104. Epub 2009 Sep 9.
7
Chemokine Signaling Enhances CD36 Responsiveness toward Oxidized Low-Density Lipoproteins and Accelerates Foam Cell Formation.
Cell Rep. 2016 Mar 29;14(12):2859-71. doi: 10.1016/j.celrep.2016.02.071. Epub 2016 Mar 17.
9
Nicotine potentiates proatherogenic effects of oxLDL by stimulating and upregulating macrophage CD36 signaling.
Am J Physiol Heart Circ Physiol. 2013 Aug 15;305(4):H563-74. doi: 10.1152/ajpheart.00042.2013. Epub 2013 Jun 7.
10
A CD36-dependent pathway enhances macrophage and adipose tissue inflammation and impairs insulin signalling.
Cardiovasc Res. 2011 Feb 15;89(3):604-13. doi: 10.1093/cvr/cvq360. Epub 2010 Nov 18.

引用本文的文献

2
Elevated hydrostatic pressure dysregulates lipid metabolism of hepatocytes.
J Physiol Biochem. 2025 Aug 11. doi: 10.1007/s13105-025-01121-7.
3
Structural elucidation of the haptoglobin-hemoglobin clearance mechanism by macrophage scavenger receptor CD163.
PLoS Biol. 2025 Jul 11;23(7):e3003264. doi: 10.1371/journal.pbio.3003264. eCollection 2025 Jul.
5
Tuning the Immune Cell Response through Surface Nanotopography Engineering.
Small Sci. 2024 Jul 21;4(9):2400227. doi: 10.1002/smsc.202400227. eCollection 2024 Sep.
6
How energy determines spatial localisation and copy number of molecules in neurons.
Nat Commun. 2025 Feb 7;16(1):1424. doi: 10.1038/s41467-025-56640-0.
8
A signaling molecule from intratumor bacteria promotes trastuzumab resistance in breast cancer cells.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2421710122. doi: 10.1073/pnas.2421710122. Epub 2025 Jan 9.
9
Recent Advancements in Imaging Techniques for Individual Extracellular Vesicles.
Molecules. 2024 Dec 10;29(24):5828. doi: 10.3390/molecules29245828.

本文引用的文献

1
Disrupting microtubule network immobilizes amoeboid chemotactic receptor in the plasma membrane.
Biochim Biophys Acta. 2011 Jun;1808(6):1701-8. doi: 10.1016/j.bbamem.2011.02.009. Epub 2011 Feb 18.
2
Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging.
J Cell Biol. 2011 Feb 7;192(3):463-80. doi: 10.1083/jcb.201009128.
3
A CD36-dependent pathway enhances macrophage and adipose tissue inflammation and impairs insulin signalling.
Cardiovasc Res. 2011 Feb 15;89(3):604-13. doi: 10.1093/cvr/cvq360. Epub 2010 Nov 18.
4
Molecular mechanisms in signal transduction at the membrane.
Nat Struct Mol Biol. 2010 Jun;17(6):659-65. doi: 10.1038/nsmb.1844. Epub 2010 May 23.
5
Spatial structure and diffusive dynamics from single-particle trajectories using spline analysis.
Biophys J. 2010 Apr 21;98(8):1712-21. doi: 10.1016/j.bpj.2009.12.4299.
6
Spatial control of EGF receptor activation by reversible dimerization on living cells.
Nature. 2010 Apr 1;464(7289):783-7. doi: 10.1038/nature08827. Epub 2010 Mar 7.
7
Signalling complexes and clusters: functional advantages and methodological hurdles.
J Cell Sci. 2010 Feb 1;123(Pt 3):309-20. doi: 10.1242/jcs.061739.
8
Cell signaling in space and time: where proteins come together and when they're apart.
Science. 2009 Nov 27;326(5957):1220-4. doi: 10.1126/science.1175668.
9
Uptake of oxidized low density lipoprotein by CD36 occurs by an actin-dependent pathway distinct from macropinocytosis.
J Biol Chem. 2009 Oct 30;284(44):30288-97. doi: 10.1074/jbc.M109.045104. Epub 2009 Sep 9.
10
The coreceptor CD2 uses plasma membrane microdomains to transduce signals in T cells.
J Cell Biol. 2009 May 4;185(3):521-34. doi: 10.1083/jcb.200809136. Epub 2009 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验