Suppr超能文献

人类线粒体转录组。

The human mitochondrial transcriptome.

机构信息

Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia.

出版信息

Cell. 2011 Aug 19;146(4):645-58. doi: 10.1016/j.cell.2011.06.051.

Abstract

The human mitochondrial genome comprises a distinct genetic system transcribed as precursor polycistronic transcripts that are subsequently cleaved to generate individual mRNAs, tRNAs, and rRNAs. Here, we provide a comprehensive analysis of the human mitochondrial transcriptome across multiple cell lines and tissues. Using directional deep sequencing and parallel analysis of RNA ends, we demonstrate wide variation in mitochondrial transcript abundance and precisely resolve transcript processing and maturation events. We identify previously undescribed transcripts, including small RNAs, and observe the enrichment of several nuclear RNAs in mitochondria. Using high-throughput in vivo DNaseI footprinting, we establish the global profile of DNA-binding protein occupancy across the mitochondrial genome at single-nucleotide resolution, revealing regulatory features at mitochondrial transcription initiation sites and functional insights into disease-associated variants. This integrated analysis of the mitochondrial transcriptome reveals unexpected complexity in the regulation, expression, and processing of mitochondrial RNA and provides a resource for future studies of mitochondrial function (accessed at http://mitochondria.matticklab.com).

摘要

人类线粒体基因组包含一个独特的遗传系统,转录为前体多顺反子转录本,随后被切割生成单个 mRNA、tRNA 和 rRNA。在这里,我们对多个细胞系和组织中的人类线粒体转录组进行了全面分析。我们使用定向深度测序和 RNA 末端的平行分析,证明了线粒体转录物丰度的广泛变化,并精确地解析了转录物加工和成熟事件。我们鉴定了以前未描述的转录物,包括小 RNA,并观察到几种核 RNA 在线粒体中的富集。我们使用高通量体内 DNaseI 足迹法,以单核苷酸分辨率建立了整个线粒体基因组中 DNA 结合蛋白占据的全局图谱,揭示了线粒体转录起始位点的调控特征,并为与疾病相关的变异提供了功能见解。对线粒体转录组的综合分析揭示了线粒体 RNA 调控、表达和加工的出人意料的复杂性,并为未来的线粒体功能研究提供了资源(可在 http://mitochondria.matticklab.com 访问)。

相似文献

1
The human mitochondrial transcriptome.
Cell. 2011 Aug 19;146(4):645-58. doi: 10.1016/j.cell.2011.06.051.
2
RNA processing in human mitochondria.
Cell Cycle. 2011 Sep 1;10(17):2904-16. doi: 10.4161/cc.10.17.17060.
3
Investigating Mitochondrial Transcriptomes and RNA Processing Using Circular RNA Sequencing.
Methods Mol Biol. 2021;2192:43-57. doi: 10.1007/978-1-0716-0834-0_4.
6
Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins.
RNA. 2011 Dec;17(12):2085-93. doi: 10.1261/rna.029405.111. Epub 2011 Oct 25.
7
The human mitochondrial transcriptome and the RNA-binding proteins that regulate its expression.
Wiley Interdiscip Rev RNA. 2012 Sep-Oct;3(5):675-95. doi: 10.1002/wrna.1128. Epub 2012 Jul 9.
8
PacBio full-length transcriptome analysis reveals the role of tRNA-like structures in RNA processing.
Cell Signal. 2025 Jan;125:111515. doi: 10.1016/j.cellsig.2024.111515. Epub 2024 Nov 19.
9
Is mitochondrial gene expression coordinated or stochastic?
Biochem Soc Trans. 2018 Oct 19;46(5):1239-1246. doi: 10.1042/BST20180174. Epub 2018 Oct 8.
10
Mapping of mitochondrial RNA-protein interactions by digital RNase footprinting.
Cell Rep. 2013 Nov 14;5(3):839-48. doi: 10.1016/j.celrep.2013.09.036. Epub 2013 Oct 31.

引用本文的文献

4
Clinical significance of altered expression of mitochondrial genome-derived LncRNA LIPCAR in colorectal cancer.
Biochem Biophys Rep. 2025 Jul 25;43:102179. doi: 10.1016/j.bbrep.2025.102179. eCollection 2025 Sep.
5
Cell cycle- and dose-dependent effects on mitochondrial DNA copy number variation following irradiation.
J Cell Sci. 2025 Aug 1;138(15). doi: 10.1242/jcs.263642. Epub 2025 Aug 8.
7
Humanin variants aggregate to produce different fibril morphologies.
J Biol Chem. 2025 Jun 19;301(7):110403. doi: 10.1016/j.jbc.2025.110403.
8
Mitochondrial tRNA processing defects reprogram mitochondrial and cellular homeostasis.
J Biol Chem. 2025 Jun 3;301(7):110334. doi: 10.1016/j.jbc.2025.110334.

本文引用的文献

1
A user's guide to the encyclopedia of DNA elements (ENCODE).
PLoS Biol. 2011 Apr;9(4):e1001046. doi: 10.1371/journal.pbio.1001046. Epub 2011 Apr 19.
2
The energetics of genome complexity.
Nature. 2010 Oct 21;467(7318):929-34. doi: 10.1038/nature09486.
3
PNPASE regulates RNA import into mitochondria.
Cell. 2010 Aug 6;142(3):456-67. doi: 10.1016/j.cell.2010.06.035.
4
Expanding the microRNA targeting code: functional sites with centered pairing.
Mol Cell. 2010 Jun 25;38(6):789-802. doi: 10.1016/j.molcel.2010.06.005.
6
Helix unwinding and base flipping enable human MTERF1 to terminate mitochondrial transcription.
Cell. 2010 Jun 11;141(6):982-93. doi: 10.1016/j.cell.2010.05.018.
7
Human mitochondrial mRNAs--like members of all families, similar but different.
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1081-5. doi: 10.1016/j.bbabio.2010.02.036. Epub 2010 Mar 6.
8
Human tRNA-derived small RNAs in the global regulation of RNA silencing.
RNA. 2010 Apr;16(4):673-95. doi: 10.1261/rna.2000810. Epub 2010 Feb 24.
9
Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication.
Mol Cell. 2010 Jan 15;37(1):67-78. doi: 10.1016/j.molcel.2009.12.021.
10
Hungry codons promote frameshifting in human mitochondrial ribosomes.
Science. 2010 Jan 15;327(5963):301. doi: 10.1126/science.1180674.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验