Department of Microbiology, Carver College of Medicine, University of Iowa, 51 Newton Rd., Iowa City, IA 52242, USA.
J Bacteriol. 2011 Nov;193(22):6215-22. doi: 10.1128/JB.05467-11. Epub 2011 Aug 19.
Bacteria encounter numerous environmental stresses which can delay or inhibit their growth. Many bacteria utilize alternative σ factors to regulate subsets of genes required to overcome different extracellular assaults. The largest group of these alternative σ factors are the extracytoplasmic function (ECF) σ factors. In this paper, we demonstrate that the expression of the ECF σ factor σ(V) in Bacillus subtilis is induced specifically by lysozyme but not other cell wall-damaging agents. A mutation in sigV results in increased sensitivity to lysozyme killing, suggesting that σ(V) is required for lysozyme resistance. Using reverse transcription (RT)-PCR, we show that the previously uncharacterized gene yrhL (here referred to as oatA for O-acetyltransferase) is in a four-gene operon which includes sigV and rsiV. In quantitative RT-PCR experiments, the expression of oatA is induced by lysozyme stress. Lysozyme induction of oatA is dependent upon σ(V). Overexpression of oatA in a sigV mutant restores lysozyme resistance to wild-type levels. This suggests that OatA is required for σ(V)-dependent resistance to lysozyme. We also tested the ability of lysozyme to induce the other ECF σ factors and found that only the expression of sigV is lysozyme inducible. However, we found that the other ECF σ factors contributed to lysozyme resistance. We found that sigX and sigM mutations alone had very little effect on lysozyme resistance but when combined with a sigV mutation resulted in significantly greater lysozyme sensitivity than the sigV mutation alone. This suggests that sigV, sigX, and sigM may act synergistically to control lysozyme resistance. In addition, we show that two ECF σ factor-regulated genes, dltA and pbpX, are required for lysozyme resistance. Thus, we have identified three independent mechanisms which B. subtilis utilizes to avoid killing by lysozyme.
细菌会遇到许多环境压力,这些压力会延迟或抑制其生长。许多细菌利用替代σ因子来调节克服不同细胞外攻击所需的基因子集。这些替代σ因子中最大的一组是细胞外功能(ECF)σ因子。在本文中,我们证明枯草芽孢杆菌中 ECF σ 因子σ(V)的表达是由溶菌酶特异性诱导的,而不是其他细胞壁损伤剂。sigV 突变导致对溶菌酶杀伤的敏感性增加,表明σ(V)是溶菌酶抗性所必需的。使用反转录(RT)-PCR,我们表明以前未表征的基因 yrhL(在此称为 O-乙酰基转移酶 oatA)位于包括 sigV 和 rsiV 的四个基因操纵子中。在定量 RT-PCR 实验中,溶菌酶应激诱导 oatA 的表达。oatA 的表达依赖于σ(V)。在 sigV 突变体中过表达 oatA 可将溶菌酶抗性恢复到野生型水平。这表明 OatA 是 σ(V)依赖的溶菌酶抗性所必需的。我们还测试了溶菌酶诱导其他 ECF σ 因子的能力,发现只有 sigV 的表达是溶菌酶诱导的。然而,我们发现其他 ECF σ 因子对溶菌酶抗性有贡献。我们发现,sigX 和 sigM 突变单独对溶菌酶抗性的影响很小,但与 sigV 突变结合时,溶菌酶敏感性显著高于 sigV 突变单独。这表明 sigV、sigX 和 sigM 可能协同作用控制溶菌酶抗性。此外,我们表明两个 ECF σ 因子调节的基因 dltA 和 pbpX 是溶菌酶抗性所必需的。因此,我们已经确定了枯草芽孢杆菌用来避免被溶菌酶杀死的三种独立机制。