Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
School of Life Sciences, University of Warwick, Coventry, UK.
Mol Syst Biol. 2021 Jul;17(7):e9832. doi: 10.15252/msb.20209832.
Genetically identical individuals in bacterial populations can display significant phenotypic variability. This variability can be functional, for example by allowing a fraction of stress prepared cells to survive an otherwise lethal stress. The optimal fraction of stress prepared cells depends on environmental conditions. However, how bacterial populations modulate their level of phenotypic variability remains unclear. Here we show that the alternative sigma factor σ circuit in Bacillus subtilis generates functional phenotypic variability that can be tuned by stress level, environmental history and genetic perturbations. Using single-cell time-lapse microscopy and microfluidics, we find the fraction of cells that immediately activate σ under lysozyme stress depends on stress level and on a transcriptional memory of previous stress. Iteration between model and experiment reveals that this tunability can be explained by the autoregulatory feedback structure of the sigV operon. As predicted by the model, genetic perturbations to the operon also modulate the response variability. The conserved sigma-anti-sigma autoregulation motif is thus a simple mechanism for bacterial populations to modulate their heterogeneity based on their environment.
在细菌群体中,遗传上相同的个体可以表现出显著的表型可变性。这种可变性可以是功能性的,例如,允许一部分有压力准备的细胞在 otherwise lethal stress 中存活。有压力准备的细胞的最佳分数取决于环境条件。然而,细菌群体如何调节其表型可变性水平尚不清楚。在这里,我们表明枯草芽孢杆菌中的替代 sigma 因子σ回路产生了功能性的表型可变性,这种可变性可以通过应激水平、环境历史和遗传扰动来调节。使用单细胞延时显微镜和微流控技术,我们发现溶菌酶应激下立即激活σ的细胞比例取决于应激水平和先前应激的转录记忆。模型与实验的迭代表明,这种可调性可以用 sigV 操纵子的自调节反馈结构来解释。正如模型所预测的,操纵子的遗传扰动也会调节响应可变性。因此,保守的 sigma-anti-sigma 自我调节模体是细菌群体根据其环境调节其异质性的一种简单机制。