Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
Am J Physiol Heart Circ Physiol. 2011 Nov;301(5):H2113-21. doi: 10.1152/ajpheart.00356.2011. Epub 2011 Aug 19.
Fetal hypoxia leads to progressive cardiac remodeling in rat offspring. The present study tested the hypothesis that maternal hypoxia results in reprogramming of matrix metalloproteinase (MMP) expression patterns and fibrillar collagen matrix in the developing heart. Pregnant rats were treated with normoxia or hypoxia (10.5% O(2)) from day 15 to 21 of gestation. Hearts were isolated from 21-day fetuses (E21) and postnatal day 7 pups (PD7). Maternal hypoxia caused a decrease in the body weight of both E21 and PD7. The heart-to-body weight ratio was increased in E21 but not in PD7. Left ventricular myocardium wall thickness and cardiomyocyte proliferation were significantly decreased in both fetal and neonatal hearts. Hypoxia had no effect on fibrillar collagen content in the fetal heart, but significantly increased the collagen content in the neonatal heart. Western blotting revealed that maternal hypoxia significantly increased collagen I, but not collagen III, levels in the neonatal heart. Maternal hypoxia decreased MMP-1 but increased MMP-13 and membrane type (MT)1-MMP in the fetal heart. In the neonatal heart, MMP-1 and MMP-13 were significantly increased. Active MMP-2 and MMP-9 levels and activities were not altered in either fetal or neonatal hearts. Hypoxia significantly increased tissue inhibitors of metalloproteinase (TIMP)-3 and TIMP-4 in both fetal and neonatal hearts. In contrast, TIMP-1 and TIMP-2 were not affected. The results demonstrate that in utero hypoxia reprograms the expression patterns of MMPs and TIMPs and causes cardiac tissue remodeling with the increased collagen deposition in the developing heart.
胎儿缺氧可导致大鼠子代心脏进行性重构。本研究旨在验证母体缺氧是否导致基质金属蛋白酶(MMP)表达模式和纤维胶原基质在心脏发育过程中重新编程的假说。妊娠大鼠从妊娠第 15 天至 21 天接受常氧或低氧(10.5%O2)处理。从 21 天胎鼠(E21)和生后第 7 天幼鼠(PD7)分离心脏。母体缺氧导致 E21 和 PD7 体重均下降。E21 的心体比增加,但 PD7 无变化。胎儿和新生儿心脏的左室心肌壁厚度和心肌细胞增殖均显著减少。低氧对胎儿心脏的纤维胶原含量无影响,但显著增加了新生儿心脏的胶原含量。Western blot 显示,母体缺氧显著增加了新生儿心脏的胶原 I,但不增加胶原 III。母体缺氧降低了胎儿心脏中的 MMP-1,但增加了 MMP-13 和膜型(MT)1-MMP。在新生儿心脏中,MMP-1 和 MMP-13 显著增加。活性 MMP-2 和 MMP-9 水平和活性在胎儿和新生儿心脏中均未改变。低氧显著增加了胎儿和新生儿心脏中组织金属蛋白酶抑制剂(TIMP)-3 和 TIMP-4 的水平。相反,TIMP-1 和 TIMP-2 不受影响。结果表明,宫内缺氧可重新编程 MMPs 和 TIMPs 的表达模式,并导致心脏组织重构,在发育中的心脏中增加胶原沉积。