Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 6007, Université de Picardie Jules Verne, 80039 Amiens, France.
Nat Mater. 2011 Oct;10(10):772-9. doi: 10.1038/nmat3093.
Li-ion batteries have empowered consumer electronics and are now seen as the best choice to propel forward the development of eco-friendly (hybrid) electric vehicles. To enhance the energy density, an intensive search has been made for new polyanionic compounds that have a higher potential for the Fe²⁺/Fe³⁺ redox couple. Herein we push this potential to 3.90 V in a new polyanionic material that crystallizes in the triplite structure by substituting as little as 5 atomic per cent of Mn for Fe in Li(Fe(1-δ)Mn(δ))SO₄F. Not only is this the highest voltage reported so far for the Fe²⁺/Fe³⁺ redox couple, exceeding that of LiFePO₄ by 450 mV, but this new triplite phase is capable of reversibly releasing and reinserting 0.7-0.8 Li ions with a volume change of 0.6% (compared with 7 and 10% for LiFePO₄ and LiFeSO₄F respectively), to give a capacity of ~125 mA h g⁻¹.
锂离子电池为消费电子产品提供了动力,现在被视为推动环保(混合动力)电动汽车发展的最佳选择。为了提高能量密度,人们一直在积极寻找具有更高 Fe²⁺/Fe³⁺氧化还原对潜力的新型聚阴离子化合物。在此,我们通过用 5%原子的 Mn 取代 Li(Fe(1-δ)Mn(δ))SO₄F 中的 Fe,在一种新的三聚体结构的聚阴离子材料中实现了这一潜力,该材料的晶体结构为三聚体结构。这不仅是迄今为止报道的 Fe²⁺/Fe³⁺氧化还原对的最高电压,比 LiFePO₄高出 450 mV,而且这种新的三聚体相能够可逆地释放和再插入 0.7-0.8 Li 离子,体积变化为 0.6%(相比之下,LiFePO₄和 LiFeSO₄F 的体积变化分别为 7%和 10%),从而提供约 125 mA h g⁻¹的容量。