1] LRCS, CNRS UMR 7314, Université de Picardie Jules Verne, 80039 Amiens, France [2] ALISTORE-European Research Institute, FR CNRS 3104, France.
Nat Mater. 2013 Sep;12(9):827-35. doi: 10.1038/nmat3699. Epub 2013 Jul 14.
Li-ion batteries have contributed to the commercial success of portable electronics and may soon dominate the electric transportation market provided that major scientific advances including new materials and concepts are developed. Classical positive electrodes for Li-ion technology operate mainly through an insertion-deinsertion redox process involving cationic species. However, this mechanism is insufficient to account for the high capacities exhibited by the new generation of Li-rich (Li(1+x)Ni(y)Co(z)Mn(1-x-y-z)O₂) layered oxides that present unusual Li reactivity. In an attempt to overcome both the inherent composition and the structural complexity of this class of oxides, we have designed structurally related Li₂Ru(1-y)Sn(y)O₃ materials that have a single redox cation and exhibit sustainable reversible capacities as high as 230 mA h g(-1). Moreover, they present good cycling behaviour with no signs of voltage decay and a small irreversible capacity. We also unambiguously show, on the basis of an arsenal of characterization techniques, that the reactivity of these high-capacity materials towards Li entails cumulative cationic (M(n+)→M((n+1)+)) and anionic (O(2-)→O₂(2-)) reversible redox processes, owing to the d-sp hybridization associated with a reductive coupling mechanism. Because Li₂MO₃ is a large family of compounds, this study opens the door to the exploration of a vast number of high-capacity materials.
锂离子电池为便携式电子产品的商业成功做出了贡献,如果能开发出新材料和新概念等重大科学进步,它们可能很快会主导电动交通市场。锂离子技术的经典正极主要通过涉及阳离子的插入-脱插氧化还原过程来工作。然而,这种机制不足以解释新一代富锂(Li(1+x)Ni(y)Co(z)Mn(1-x-y-z)O₂)层状氧化物所表现出的高容量,这些氧化物具有不寻常的锂反应性。为了克服这一类氧化物固有的组成和结构复杂性,我们设计了结构相关的 Li₂Ru(1-y)Sn(y)O₃ 材料,这些材料具有单一的氧化还原阳离子,可实现高达 230 mA h g(-1)的可持续可逆容量。此外,它们表现出良好的循环性能,没有电压下降的迹象,并且不可逆容量较小。我们还通过一系列的表征技术,明确表明这些高容量材料对锂的反应性涉及累积的阳离子(M(n+)→M((n+1)+))和阴离子(O(2-)→O₂(2-))可逆氧化还原过程,这归因于与还原偶联机制相关的 d 带杂化。由于 Li₂MO₃ 是一个庞大的化合物家族,因此这项研究为探索大量高容量材料开辟了道路。