Department of Geological Sciences, Michigan State University, East Lansing, MI 48824, USA.
Environ Manage. 2011 Nov;48(5):957-74. doi: 10.1007/s00267-011-9740-2. Epub 2011 Aug 21.
A classification system is often used to reduce the number of different ecosystem types that governmental agencies are charged with monitoring and managing. We compare the ability of several different hydrogeomorphic (HGM)-based classifications to group lakes for water chemistry/clarity. We ask: (1) Which approach to lake classification is most successful at classifying lakes for similar water chemistry/clarity? (2) Which HGM features are most strongly related to the lake classes? and, (3) Can a single classification successfully classify lakes for all of the water chemistry/clarity variables examined? We use univariate and multivariate classification and regression tree (CART and MvCART) analysis of HGM features to classify alkalinity, water color, Secchi, total nitrogen, total phosphorus, and chlorophyll a from 151 minimally disturbed lakes in Michigan USA. We developed two MvCART models overall and two CART models for each water chemistry/clarity variable, in each case comparing: local HGM characteristics alone and local HGM characteristics combined with regionalizations and landscape position. The combined CART models had the highest strength of evidence (ω(i) range 0.92-1.00) and maximized within class homogeneity (ICC range 36-66%) for all water chemistry/clarity variables except water color and chlorophyll a. Because the most successful single classification was on average 20% less successful in classifying other water chemistry/clarity variables, we found that no single classification captures variability for all lake responses tested. Therefore, we suggest that the most successful classification (1) is specific to individual response variables, and (2) incorporates information from multiple spatial scales (regionalization and local HGM variables).
分类系统通常用于减少政府机构负责监测和管理的不同生态系统类型的数量。我们比较了几种不同的基于水文地貌(HGM)的分类方法,以对湖泊进行水质/清晰度分组。我们提出了以下三个问题:(1)哪种湖泊分类方法最适合对具有相似水质/清晰度的湖泊进行分类?(2)哪些 HGM 特征与湖泊分类最密切相关?(3)单一分类是否可以成功地对所有检查的水质/清晰度变量对湖泊进行分类?我们使用 HGM 特征的单变量和多变量分类和回归树(CART 和 MvCART)分析来对来自美国密歇根州 151 个最小干扰湖泊的碱度、水色、透明度、总氮、总磷和叶绿素 a 进行分类。我们总共开发了两个 MvCART 模型和两个针对每个水质/清晰度变量的 CART 模型,在每种情况下比较:单独的局部 HGM 特征以及与区域化和景观位置相结合的局部 HGM 特征。组合的 CART 模型具有最高的证据强度(ω(i)范围为 0.92-1.00),并且最大化了所有水质/清晰度变量(ICC 范围为 36-66%)的类内同质性,除了水色和叶绿素 a。由于最成功的单一分类在对其他水质/清晰度变量进行分类时平均成功率低 20%,因此我们发现没有单一分类可以捕获所有测试湖泊响应的变异性。因此,我们建议(1)最成功的分类是针对特定的单个响应变量,(2)结合了多个空间尺度(区域化和局部 HGM 变量)的信息。