Suppr超能文献

射频线圈阵列设计的 ICE 去耦技术。

ICE decoupling technique for RF coil array designs.

机构信息

Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94158, USA.

出版信息

Med Phys. 2011 Jul;38(7):4086-93. doi: 10.1118/1.3598112.

Abstract

PURPOSE

Parallel magnetic resonance imaging (MRI) requires an array of RF coil elements with different sensitivity distributions and with minimal electromagnetic coupling. The goal of this project was to develop a new method based on induced current compensation or elimination (ICE) for improved coil element decoupling and to investigate its performance in phantom MR images.

METHODS

An electromagnetic decoupling method based on induced current compensation or elimination for nonoverlapping RF coil arrays was developed with the design criteria of high efficiency, easy implementation, and no physical connection to RF array elements. An eigenvalue/eigenvector approach was employed to analyze the decoupling mechanism and condition. A two-channel microstrip array and an eight-channel coil array were built to test the performance of the method. Following workbench tests, MR imaging experiments were performed on a 7T MR scanner.

RESULTS

The bench tests showed that both arrays achieved sufficient decoupling with a S21 less than -25 dB among the coil elements at 298 MHz. The MR phantom images demonstrated well-defined sensitivity distributions from each coil element and the unique decoupling capability of the proposed ICE decoupling technique. B1 distributions of the individual elements were also measured and calculated.

CONCLUSIONS

The theoretical analysis and experiments demonstrated the feasibility of the decoupling method for high field RF coil array designs without overlapping or direct physical connections between coil elements, which provide more flexibility for coil array design and optimization. The method offers a new approach to address the RF array decoupling issue, which is a major challenge in implementing parallel imaging.

摘要

目的

并行磁共振成像(MRI)需要具有不同灵敏度分布且电磁耦合最小的 RF 线圈元件阵列。本项目的目的是开发一种基于感应电流补偿或消除(ICE)的新方法,以提高线圈元件解耦,并研究其在磁共振图像中的性能。

方法

我们开发了一种基于感应电流补偿或消除的非重叠 RF 线圈阵列电磁解耦方法,其设计标准为高效率、易于实现和与 RF 阵列元件无物理连接。采用特征值/特征向量方法分析解耦机制和条件。构建了双通道微带阵列和八通道线圈阵列来测试该方法的性能。在进行工作台测试之后,在 7T 磁共振扫描仪上进行了磁共振成像实验。

结果

台架测试表明,在 298MHz 时,两个阵列在各个线圈元件之间都实现了足够的解耦,S21 小于-25dB。磁共振体模图像显示了来自每个线圈元件的定义明确的灵敏度分布,以及所提出的 ICE 解耦技术的独特解耦能力。还测量和计算了各个元件的 B1 分布。

结论

理论分析和实验证明了该解耦方法对于没有重叠或线圈元件之间直接物理连接的高磁场 RF 线圈阵列设计的可行性,这为线圈阵列设计和优化提供了更大的灵活性。该方法为解决并行成像中 RF 阵列解耦问题提供了一种新方法。

相似文献

1
ICE decoupling technique for RF coil array designs.
Med Phys. 2011 Jul;38(7):4086-93. doi: 10.1118/1.3598112.
3
Magnetic wall decoupling method for monopole coil array in ultrahigh field MRI: a feasibility test.
Quant Imaging Med Surg. 2014 Apr;4(2):79-86. doi: 10.3978/j.issn.2223-4292.2014.04.10.
4
Novel inductive decoupling technique for flexible transceiver arrays of monolithic transmission line resonators.
Magn Reson Med. 2015 Apr;73(4):1669-81. doi: 10.1002/mrm.25260. Epub 2014 Apr 17.
5
Multi-channel microstrip transceiver arrays using harmonics for high field MR imaging in humans.
IEEE Trans Med Imaging. 2012 Feb;31(2):183-91. doi: 10.1109/TMI.2011.2166273. Epub 2011 Aug 30.
6
Field Distribution and Coupling Investigation of an Eight-Channel RF Coil Consisting of Different Dipole Coil Elements for 7 T MRI.
IEEE Trans Biomed Eng. 2017 Jun;64(6):1297-1304. doi: 10.1109/TBME.2016.2602441. Epub 2016 Aug 25.
7
RF surface receive array coils: the art of an LC circuit.
J Magn Reson Imaging. 2013 Jul;38(1):12-25. doi: 10.1002/jmri.24159. Epub 2013 May 6.
8
7T transmit/receive arrays using ICE decoupling for human head MR imaging.
IEEE Trans Med Imaging. 2014 Sep;33(9):1781-7. doi: 10.1109/TMI.2014.2313879. Epub 2014 Apr 1.
10
Closely-spaced double-row microstrip RF arrays for parallel MR imaging at ultrahigh fields.
Appl Magn Reson. 2015 Nov;46(11):1239-1248. doi: 10.1007/s00723-015-0712-1. Epub 2015 Jun 30.

引用本文的文献

2
Electric field and SAR reduction in high-impedance RF arrays by using high permittivity materials for 7T MR imaging.
PLoS One. 2024 Jul 3;19(7):e0305464. doi: 10.1371/journal.pone.0305464. eCollection 2024.
3
Eight-channel dual-tuned coaxial-transmission-line coils array for human head imaging at 10.5 Tesla.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2024 May;32.
4
A Review of Current Control and Decoupling Methods for MRI Transmit Arrays.
IEEE Rev Biomed Eng. 2025;18:388-400. doi: 10.1109/RBME.2024.3351713. Epub 2025 Jan 28.
6
Dual-Tuned Coaxial-Transmission-Line RF Coils for Hyperpolarized C and Deuterium H Metabolic MRS Imaging at Ultrahigh Fields.
IEEE Trans Biomed Eng. 2024 May;71(5):1521-1530. doi: 10.1109/TBME.2023.3341760. Epub 2024 Apr 22.
7
8
A coupled planar RF array for ultrahigh field MR imaging.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2023 Jun;31.
9
Investigating the Optimal Number of Channels in an Array System for Human Head Imaging at 7T.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2023 Jun;31.
10
Design of a Highly Decoupled Compact Dual-tuned Transceiver RF Coil Arrays for H MRI and P MRSI at 7T.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib. 2023 Jun;31.

本文引用的文献

3
Design of an inductively decoupled microstrip array at 9.4 T.
J Magn Reson. 2006 Sep;182(1):126-32. doi: 10.1016/j.jmr.2006.04.013. Epub 2006 Jul 7.
4
Saturated double-angle method for rapid B1+ mapping.
Magn Reson Med. 2006 Jun;55(6):1326-33. doi: 10.1002/mrm.20896.
5
Transmit and receive transmission line arrays for 7 Tesla parallel imaging.
Magn Reson Med. 2005 Feb;53(2):434-45. doi: 10.1002/mrm.20321.
6
Ultrahigh field magnetic resonance imaging and spectroscopy.
Magn Reson Imaging. 2003 Dec;21(10):1263-81. doi: 10.1016/j.mri.2003.08.027.
7
Transmit SENSE.
Magn Reson Med. 2003 Jan;49(1):144-50. doi: 10.1002/mrm.10353.
8
Design of a SENSE-optimized high-sensitivity MRI receive coil for brain imaging.
Magn Reson Med. 2002 Jun;47(6):1218-27. doi: 10.1002/mrm.10169.
9
Generalized autocalibrating partially parallel acquisitions (GRAPPA).
Magn Reson Med. 2002 Jun;47(6):1202-10. doi: 10.1002/mrm.10171.
10
Coupling and decoupling theory and its application to the MRI phased array.
Magn Reson Med. 2002 Jul;48(1):203-13. doi: 10.1002/mrm.10186.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验