Suppr超能文献

通过等效电路建模和本征模分析提高八通道3T发射阵列的微调效率和设计优化

Enhancing fine-tuning efficiency and design optimization of an eight-channel 3T transmit array via equivalent circuit modeling and Eigenmode analysis.

作者信息

Kazemivalipour Ehsan, Atalar Ergin

机构信息

Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.

National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.

出版信息

Med Phys. 2025 Apr;52(4):2025-2039. doi: 10.1002/mp.17612. Epub 2025 Jan 15.

Abstract

BACKGROUND

Radiofrequency (RF) transmit arrays play a crucial role in various MRI applications, offering enhanced field control and improved imaging capabilities. Designing and optimizing these arrays, particularly in high-field MRI settings, poses challenges related to coupling, resonance, and construction imperfections. Numerical electromagnetic simulation methods effectively aid in the initial design, but discrepancies between simulated and fabricated arrays often necessitate fine-tuning. Fine-tuning involves iteratively adjusting the array's lumped elements, a complex and time-consuming process that demands expertise and substantial experience. This process is particularly required for high-Q-factor arrays or those with decoupling circuitries, where the impact of construction variations and coupling between elements is more pronounced. In this context, our study introduces and validates an accelerated fine-tuning approach custom RF transmit arrays, leveraging the arrays equivalent circuit modeling and eigenmode analysis of the scattering (S) parameters.

PURPOSE

This study aims to streamline the fine-tuning process of lab-fabricated RF transmit arrays, specifically targeting an eight-channel degenerate birdcage coil designed for 3T MRI. The objective is to minimize the array's modal reflected power values and address challenges related to coupling and resonance.

METHODS

An eight-channel 3T transmit array is designed and simulated, optimizing capacitor values via the co-simulation strategy and eigenmode analysis. The resulting values are used in constructing a prototype. Experimental measurements of the fabricated coil's S-parameters and fitting them into an equivalent circuit model, enabling estimation of self/mutual-inductances and self/mutual-resistances of the fabricated coil. Capacitor adjustments in the equivalent circuit model minimize mismatches between experimental and simulated results.

RESULTS

The simulated eight-channel array, optimized for minimal normalized reflected power, exhibits excellent tuning and matching and an acceptable level of decoupling (|S|≤-23 dB and |S|≤-11 dB). However, the fabricated array displays deviations, including resonances at different frequencies and increased reflections. The proposed fine-tuning approach yields an updated set of capacitor values, improving resonance frequencies and reducing reflections. The fine-tuned array demonstrates comparable performance to the simulation (|S|≤-15 dB and |S|≤-9 dB), mitigating disparities caused by construction imperfections. The maximum error between the calculated and measured S-parameters is -7 dB.

CONCLUSION

This accelerated fine-tuning approach, integrating equivalent circuit modeling and eigenmode analysis, effectively optimizes the performance of fabricated transmit arrays. Demonstrated through the design and refinement of an eight-channel array, the method addresses construction-related disparities, showcasing its potential to enhance overall array performance. The approach holds promise for streamlining the design and optimization of complex RF coil systems, particularly for high Q-factor arrays and/or arrays with decoupling circuitry.

摘要

背景

射频(RF)发射阵列在各种MRI应用中起着至关重要的作用,可提供增强的场控制和改进的成像能力。设计和优化这些阵列,尤其是在高场MRI环境中,会面临与耦合、共振和结构缺陷相关的挑战。数值电磁仿真方法有效地辅助了初始设计,但模拟阵列和制造阵列之间的差异通常需要进行微调。微调涉及迭代调整阵列的集总元件,这是一个复杂且耗时的过程,需要专业知识和丰富经验。对于高Q因子阵列或具有去耦电路的阵列,这一过程尤为必要,因为元件之间的结构变化和耦合影响更为明显。在此背景下,我们的研究引入并验证了一种针对定制RF发射阵列的加速微调方法,该方法利用了阵列的等效电路建模和散射(S)参数的本征模分析。

目的

本研究旨在简化实验室制造的RF发射阵列的微调过程,具体针对为3T MRI设计的八通道简并鸟笼线圈。目标是最小化阵列的模态反射功率值,并解决与耦合和共振相关的挑战。

方法

设计并模拟了一个八通道3T发射阵列,通过协同仿真策略和本征模分析优化电容值。所得值用于构建一个原型。对制造线圈的S参数进行实验测量,并将其拟合到等效电路模型中,从而能够估计制造线圈的自感/互感和自电阻/互电阻。在等效电路模型中调整电容可最小化实验结果与模拟结果之间的不匹配。

结果

针对最小归一化反射功率进行优化的模拟八通道阵列表现出出色的调谐和匹配以及可接受的去耦水平(|S|≤ -23 dB和|S|≤ -11 dB)。然而,制造的阵列显示出偏差,包括在不同频率处的共振和反射增加。所提出的微调方法产生了一组更新的电容值,提高了共振频率并减少了反射。微调后的阵列表现出与模拟相当的性能(|S|≤ -15 dB和|S|≤ -9 dB),减轻了由结构缺陷引起的差异。计算得到的和测量得到的S参数之间的最大误差为 -7 dB。

结论

这种结合等效电路建模和本征模分析的加速微调方法有效地优化了制造的发射阵列的性能。通过八通道阵列的设计和改进得到了证明,该方法解决了与结构相关的差异,展示了其增强整体阵列性能的潜力。该方法有望简化复杂RF线圈系统的设计和优化,特别是对于高Q因子阵列和/或具有去耦电路的阵列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02f4/11972053/ba1165724f4a/MP-52-2025-g009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验