Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States.
J Am Chem Soc. 2011 Oct 5;133(39):15559-67. doi: 10.1021/ja204755p. Epub 2011 Sep 13.
Peptoids, or oligomers of N-substituted glycines, are a class of foldamers that have shown extraordinary functional potential since their inception nearly two decades ago. However, the generation of well-defined peptoid secondary structures remains a difficult task. This challenge is due, in part, to the lack of a thorough understanding of peptoid sequence-structure relationships and, consequently, an incomplete understanding of the peptoid folding process. We seek to delineate sequence-structure relationships through the systematic study of noncovalent interactions in peptoids and the design of novel amide side chains capable of such interactions. Herein, we report the synthesis and detailed structural analysis of a series of (S)-N-(1-naphthylethyl)glycine (Ns1npe) peptoid homo-oligomers by X-ray crystallography, NMR spectroscopy, and circular dichroism (CD) spectroscopy. Four of these peptoids were found to adopt well-defined structures in the solid state, with dihedral angles similar to those observed in polyproline type I (PPI) peptide helices and in peptoids with α-chiral side chains. The X-ray crystal structure of a representative Ns1npe tetramer revealed an all cis-amide helix, with approximately three residues per turn, and a helical pitch of approximately 6.0 Å. 2D-NMR analysis of the length-dependent Ns1npe series showed that these peptoids have very high overall backbone amide K(cis/trans) values in acetonitrile, indicative of conformationally homogeneous structures in solution. Additionally, CD spectroscopy studies of the Ns1npe homo-oligomers in acetonitrile and methanol revealed a striking length-dependent increase in ellipticity per amide. These Ns1npe helices represent the most robust peptoid helices to be reported, and the incorporation of (S)-N-(1-naphthylethyl)glycines provides a new approach for the generation of stable helical structure in this important class of foldamers.
肽缩氨酸,或 N-取代甘氨酸的低聚物,是一类自近二十年前问世以来表现出非凡功能潜力的折叠体。然而,生成明确的肽缩氨酸二级结构仍然是一项艰巨的任务。这一挑战部分归因于对肽缩氨酸序列-结构关系缺乏透彻的了解,因此对肽缩氨酸折叠过程的了解也不完整。我们试图通过系统研究肽缩氨酸中的非共价相互作用以及设计能够发生这种相互作用的新型酰胺侧链来描绘序列-结构关系。在这里,我们通过 X 射线晶体学、NMR 光谱学和圆二色性(CD)光谱学报告了一系列(S)-N-(1-萘乙基)甘氨酸(Ns1npe)肽缩氨酸同聚体的合成和详细结构分析。这四种肽缩氨酸在固态中被发现具有明确的结构,二面角类似于聚脯氨酸 I 型(PPI)肽螺旋和具有α-手性侧链的肽缩氨酸中观察到的二面角。代表性 Ns1npe 四聚体的 X 射线晶体结构揭示了一个全顺式酰胺螺旋,每转约有三个残基,螺旋螺距约为 6.0 Å。对长度依赖性的 Ns1npe 系列的 2D-NMR 分析表明,这些肽缩氨酸在乙腈中的总骨架酰胺 K(cis/trans)值非常高,表明在溶液中具有构象均一的结构。此外,在乙腈和甲醇中对 Ns1npe 同聚体的 CD 光谱研究表明,每酰胺的椭圆率随长度呈显著增加。这些 Ns1npe 螺旋是迄今为止报道的最稳定的肽缩氨酸螺旋,并且(S)-N-(1-萘乙基)甘氨酸的掺入为这一重要折叠体类中稳定螺旋结构的生成提供了一种新方法。