School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
Lab Chip. 2011 Oct 21;11(20):3458-64. doi: 10.1039/c1lc20280d. Epub 2011 Aug 24.
We describe a microfluidic device containing a mineral matrix capable of rapidly generating hydroxyl radicals that enables high-resolution structural studies of nucleic acids. Hydroxyl radicals cleave the solvent accessible backbone of DNA and RNA; the cleavage products can be detected with as fine as single nucleotide resolution. Protection from hydroxyl radical cleavage (footprinting) can identify sites of protein binding or the presence of tertiary structure. Here we report preparation of micron sized particles of iron sulfide (pyrite) and fabrication of a microfluidic prototype that together generate enough hydroxyl radicals within 20 ms to cleave DNA sufficiently for a footprinting analysis to be conducted. This prototype enables the development of high-throughput and/or rapid reaction devices with which to probe nucleic acid folding dynamics and ligand binding.
我们描述了一种包含矿物基质的微流控装置,该装置能够快速产生羟基自由基,从而实现核酸的高分辨率结构研究。羟基自由基会切断 DNA 和 RNA 的溶剂可及骨架;可以检测到单个核苷酸分辨率的切割产物。对羟基自由基切割的保护(足迹分析)可以识别蛋白质结合的部位或三级结构的存在。在这里,我们报告了制备微米级的硫化亚铁(黄铁矿)颗粒和制造微流控原型的方法,这些颗粒和原型共同在 20 毫秒内产生足够的羟基自由基,足以使 DNA 发生足够的切割,以便进行足迹分析。该原型可以开发高通量和/或快速反应的设备,用于探测核酸折叠动力学和配体结合。