Suppr超能文献

在液-液界面形成的含银纳米粒子的泡沫状聚合物薄膜。

Formation of Ag nanoparticle-doped foam-like polymer films at the liquid-liquid interface.

机构信息

Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100, PR China.

出版信息

J Phys Chem B. 2011 Sep 29;115(38):11113-8. doi: 10.1021/jp2059722. Epub 2011 Sep 6.

Abstract

The composite poly(2-vinylpyridine) (P2VP)-Ag(+) foam-like thin films were prepared at the interface between AgNO(3) aqueous solution and polymer chloroform solution at 25 °C. An X-ray photoelectron spectroscopy (XPS) investigation indicated that Ag(+) ions in the composite films were partially transformed to Ag atoms after irradiated by UV-light and completely transformed to Ag atoms after being treated with KBH(4) aqueous solution. Ag nanoparticles with the average sizes of 2.71 ± 0.82 and 3.28 ± 1.20 nm were generated in these two transferred films with different treatments, respectively. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images showed clearly that the composite films were composed of microcapsules whose walls had multilayer structures, and the nanoparticles were incorporated in the walls. The formation of the composite films at the liquid-liquid interface was attributed to the adsorption of the polymer molecules at the interface, coordination between the pyridine groups and Ag(+) ions, and self-assembly of the composite molecules. Furthermore, the catalytic activity of the composite films was evaluated using the reduction of 4-nitrophenol (4-NP) by KBH(4). The results demonstrated that the composite thin films have high and durable catalytic activity.

摘要

在 25°C 下,将 AgNO3 水溶液和聚合物氯仿溶液之间的界面制备复合聚(2-乙烯基吡啶)(P2VP)-Ag(+)泡沫状薄膜。X 射线光电子能谱(XPS)研究表明,复合膜中的 Ag(+)离子在紫外光照射后部分转化为 Ag 原子,在经过 KBH(4)水溶液处理后完全转化为 Ag 原子。在用两种不同方法处理后,这两种转移膜中分别生成了平均粒径为 2.71±0.82nm 和 3.28±1.20nm 的 Ag 纳米粒子。透射电子显微镜(TEM)和高分辨率 TEM(HRTEM)图像清楚地表明,复合膜由具有多层结构的微胶囊组成,纳米粒子被掺入到壁中。在液-液界面形成复合膜归因于聚合物分子在界面上的吸附、吡啶基团与 Ag(+)离子的配位以及复合分子的自组装。此外,还使用 KBH(4)还原 4-硝基苯酚(4-NP)来评估复合膜的催化活性。结果表明,复合薄膜具有高且持久的催化活性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验