Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada.
J Am Chem Soc. 2011 Oct 5;133(39):15434-43. doi: 10.1021/ja2021944. Epub 2011 Sep 9.
Hydrogen is the ideal fuel because it contains the most energy per gram of any chemical substance and forms water as the only byproduct of consumption. However, storage still remains a formidable challenge because of the thermodynamic and kinetic issues encountered when binding hydrogen to a carrier. In this study, we demonstrate how the principal binding sites in a new class of hydrogen storage materials based on the Kubas interaction can be tuned by variation of the coordination sphere about the metal to dramatically increase the binding enthalpies and performance, while also avoiding the shortcomings of hydrides and physisorpion materials, which have dominated most research to date. This was accomplished through hydrogenation of chromium alkyl hydrazide gels, synthesized from bis(trimethylsilylmethyl) chromium and hydrazine, to form materials with low-coordinate Cr hydride centers as the principal H(2) binding sites, thus exploiting the fact that metal hydrides form stronger Kubas interactions than the corresponding metal alkyls. This led to up to a 6-fold increase in storage capacity at room temperature. The material with the highest capacity has an excess reversible storage of 3.23 wt % at 298 K and 170 bar without saturation, corresponding to 40.8 kg H(2)/m(3), comparable to the 2015 DOE system goal for volumetric density (40 kg/m(3)) at a safe operating pressure. These materials possess linear isotherms and enthalpies that rise on coverage, retain up to 100% of their adsorption capacities on warming from 77 to 298 K, and have no kinetic barrier to adsorption or desorption. In a practical system, these materials would use pressure instead of temperature as a toggle and can thus be used in compressed gas tanks, currently employed in the majority of hydrogen test vehicles, to dramatically increase the amount of hydrogen stored, and therefore range of any vehicle.
氢气是理想的燃料,因为它在任何化学物质中每克所含的能量最多,并且消耗的唯一副产品是水。然而,由于在将氢气与载体结合时遇到的热力学和动力学问题,存储仍然是一个巨大的挑战。在这项研究中,我们展示了如何通过改变金属配位球来调整基于 Kubas 相互作用的新型储氢材料的主要结合位点,从而显著增加结合焓和性能,同时避免了主导迄今为止大部分研究的氢化物和物理吸附材料的缺点。这是通过氢化铬烷基酰肼凝胶来实现的,该凝胶是由双(三甲基甲硅烷基甲基)铬和肼合成的,形成具有低配位 Cr 氢化物中心作为主要 H2 结合位点的材料,从而利用了金属氢化物形成更强的 Kubas 相互作用的事实比相应的金属烷基。这导致在室温下的存储容量增加了 6 倍。容量最高的材料在 298 K 和 170 bar 下具有 3.23wt%的过量可逆储存,没有饱和,相当于 40.8kgH2/m3,与 2015 年 DOE 系统的体积密度目标(40kg/m3)相当,工作压力安全。这些材料具有线性等温线和焓,随着覆盖率的增加而升高,在从 77 升温至 298 K 的过程中保留了高达 100%的吸附容量,并且在吸附和解吸过程中没有动力学障碍。在实际系统中,这些材料将使用压力而不是温度作为开关,因此可以在压缩气体罐中使用,压缩气体罐目前被用于大多数氢气测试车辆,以显著增加储存的氢气量,从而增加任何车辆的行驶里程。