Department of Chemistry University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland.
BMC Biochem. 2011 Aug 24;12:47. doi: 10.1186/1471-2091-12-47.
Restriction endonucleases are widely applied in recombinant DNA technology. Among them, enzymes of class IIS, which cleave DNA beyond recognition sites, are especially useful. We use BsaI enzyme for the pinpoint introduction of halogen nucleobases into DNA. This has been done for the purpose of anticancer radio- and phototherapy that is our long-term objective.
An enzymatic method for synthesizing long double-stranded DNA labeled with the halogen derivatives of nucleobases (Hal-NBs) with 1-bp accuracy has been put forward and successfully tested on three different DNA fragments containing the 5-bromouracil (5-BrU) residue. The protocol assumes enzymatic cleavage of two Polymerase-Chain-Reaction (PCR) fragments containing two recognition sequences for the same or different class IIS restriction endonucleases, where each PCR fragment has a partially complementary cleavage site. These sites are introduced using synthetic DNA primers or are naturally present in the sequence used. The cleavage sites are not compatible, and therefore not susceptible to ligation until they are partially filled with a Hal-NB or original nucleobase, resulting in complementary cohesive end formation. Ligation of these fragments ultimately leads to the required Hal-NB-labeled DNA duplex. With this approach, a synthetic, extremely long DNA fragment can be obtained by means of a multiple assembly reaction (n × maximum PCR product length: n × app. 50 kb).
The long, precisely labeled DNA duplexes obtained behave in very much the same manner as natural DNA and are beyond the range of chemical synthesis. Moreover, the conditions of synthesis closely resemble the natural ones, and all the artifacts accompanying the chemical synthesis of DNA are thus eliminated. The approach proposed seems to be completely general and could be used to label DNA at multiple pre-determined sites and with halogen derivatives of any nucleobase. Access to DNAs labeled with Hal-NBs at specific position is an indispensable condition for the understanding and optimization of DNA photo- and radio-degradation, which are prerequisites for clinical trials of Hal-NBs in anticancer therapy.
限制内切酶在重组 DNA 技术中得到广泛应用。其中,能够在识别位点以外切割 DNA 的 II 类酶特别有用。我们使用 BsaI 酶将卤素碱基精确地引入 DNA 中。这是为了实现我们的长期目标——癌症的放化疗。
提出了一种酶法,可将卤素碱基(Hal-NB)衍生物标记的长双链 DNA 以 1bp 的精度合成,该方法已在包含 5-溴尿嘧啶(5-BrU)残基的三个不同 DNA 片段上得到成功验证。该方案假设酶切两个聚合酶链式反应(PCR)片段,这些片段包含两个相同或不同 II 类限制内切酶的识别序列,每个 PCR 片段都有一个部分互补的切割位点。这些位点是通过合成 DNA 引物引入的,或者在使用的序列中天然存在。这些切割位点不兼容,因此在未被卤素碱基或原始碱基部分填充之前不会发生连接,从而形成互补粘性末端。这些片段的连接最终导致所需的 Hal-NB 标记的 DNA 双链体的形成。通过这种方法,可以通过多次组装反应(n×最大 PCR 产物长度:n×约 50kb)获得合成的、超长的 DNA 片段。
获得的长且精确标记的 DNA 双链体的行为与天然 DNA 非常相似,并且超出了化学合成的范围。此外,合成条件非常接近自然条件,因此消除了伴随 DNA 化学合成的所有人工制品。所提出的方法似乎是完全通用的,可以用于在多个预定位置标记 DNA,并使用任何碱基的卤素衍生物。获得在特定位置标记的 Hal-NB 的 DNA 是理解和优化 DNA 光降解和放射降解的必要条件,这是在癌症治疗中进行 Hal-NB 临床试验的前提。