CRS4, Polaris Building 1, 09010 Pula, Italy.
Phys Rev Lett. 2011 Jul 22;107(4):044503. doi: 10.1103/PhysRevLett.107.044503. Epub 2011 Jul 21.
The lagrangian point of view is adopted to study turbulent premixed combustion. The evolution of the volume fraction of combustion products is established by the Reynolds transport theorem. It emerges that the burned-mass fraction is led by the turbulent particle motion, by the flame front velocity, and by the mean curvature of the flame front. A physical requirement connecting particle turbulent dispersion and flame front velocity is obtained from equating the expansion rates of the flame front progression and of the unburned particles spread. The resulting description compares favorably with experimental data. In the case of a zero-curvature flame, with a non-markovian parabolic model for turbulent dispersion, the formulation yields the Zimont equation extended to all elapsed times and fully determined by turbulence characteristics. The exact solution of the extended Zimont equation is calculated and analyzed to bring out different regimes.
采用拉格朗日观点研究了湍流预混燃烧。通过雷诺输运定理建立了燃烧产物体积分数的演化方程。结果表明,燃烧质量分数由湍流粒子运动、火焰前锋速度和火焰前锋的平均曲率决定。通过使火焰前锋推进速度和未燃粒子扩散速度的增长率相等,从相等中得到一个连接粒子湍流扩散和火焰前锋速度的物理要求。所得描述与实验数据非常吻合。在零曲率火焰的情况下,对于非马尔可夫抛物线模型的湍流扩散,该公式给出了扩展到所有时间的齐蒙特方程,并完全由湍流特性确定。计算并分析了扩展的齐蒙特方程的精确解,以揭示不同的状态。