Kim Dae Ho, Kim Jin Min
Department of Physics, Soongsil University, Seoul 156-743, Republic of Korea.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011105. doi: 10.1103/PhysRevE.84.011105. Epub 2011 Jul 7.
A conserved noise restricted solid-on-solid model on both a Sierpinski gasket substrate and a checkerboard fractal substrate is studied. The interface width W grows as t(β) at early time t and becomes saturated at L(α) for t >> L(z), where L is the system size. We obtain β ≈ 0.0788, α ≈ 0.377 for a Sierpinski gasket, and β ≈ 0.100, α ≈ 0.516 for a checkerboard fractal. The dynamic exponent z ≈ 4.79 for a Sierpinski gasket and z ≈ 5.16 for a checkerboard fractal are obtained by the relation z = α/β. They satisfy the scaling relations 4 α + 2 d(f) = z and z = 2 z(rw), where z(rw) is the random-walk exponent of the fractal substrate. A fractional Langevin equation is introduced to describe the model.
研究了在谢尔宾斯基垫片基底和棋盘分形基底上的一个守恒噪声受限的固-固模型。界面宽度W在早期时间t按t(β)增长,并且对于t >> L(z)时在L(α)处达到饱和,其中L是系统尺寸。对于谢尔宾斯基垫片,我们得到β≈0.0788,α≈0.377;对于棋盘分形,β≈0.100,α≈0.516。通过z = α/β的关系,得到谢尔宾斯基垫片的动力学指数z≈4.79,棋盘分形的z≈5.16。它们满足标度关系4α + 2d(f) = z和z = 2z(rw),其中z(rw)是分形基底的随机游走指数。引入了一个分数阶朗之万方程来描述该模型。