Suppr超能文献

提高随机标记的一致性和减少歧义:一种优化方法。

Improving consistency and reducing ambiguity in stochastic labeling: an optimization approach.

机构信息

MEMBER, IEEE, Image Processing Institute, University of Southern California, Los Angeles, CA 90007; INRIA, Rocquencourt, France; University of Paris XI, Paris, France.

出版信息

IEEE Trans Pattern Anal Mach Intell. 1981 Apr;3(4):412-24. doi: 10.1109/tpami.1981.4767127.

Abstract

We approach the problem of labeling a set of objects from a quantitative standpoint. We define a world model in terms of transition probabilities and propose a definition of a class of global criteria that combine both ambiguity and consistency. A projected gradient algorithm is developed to minimize the criterion. We show that the minimization procedure can be implemented in a highly parallel manner. Results are shown on several examples and comparisons are made with relaxation labeling techniques.

摘要

我们从定量的角度来处理一组对象的标注问题。我们根据转移概率定义了一个世界模型,并提出了一类同时考虑模糊性和一致性的全局准则的定义。我们开发了一个投影梯度算法来最小化这个准则。我们表明,这个最小化过程可以以高度并行的方式实现。我们在几个例子上展示了结果,并与松弛标注技术进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验